4.5 Article

Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: A DNS study

期刊

COMPUTERS & FLUIDS
卷 181, 期 -, 页码 208-223

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2019.01.022

关键词

Drag reduction; Turbulence; Spatial stokes layer; Flow control

向作者/读者索取更多资源

Direct Numerical Simulation (DNS) studies of a fully developed turbulent channel flow are performed with sinusoidal surface texture to assess its ability to enhance turbulent skin-frictional drag reductions over superhydrophobic surfaces (SHS). The streamwise sinusoidal microgroove structure generates asymmetric secondary flows to induce an in-plane stationary distribution of spanwise velocity that oscillates in the streamwise direction. The transverse motions over a sinusoidal texture behave analogously to an existing drag-reduction technique by spanwise wall oscillations. The friction-drag levels and slip-lengths are precisely quantified for various streamwise wavelength configurations, and an optimum wavelength for the maximum reduction in turbulent drag is determined. The response of the near-wall turbulent structures to the sinusoidal microgrooves is also analysed. The transverse Stokes strain generates span wise tilting in the near-wall streaks for large wavelengths, inducing an apparent drop in the wall-normal ejections and sweeps, thereby reducing the turbulent contribution to the wall-shear-stress. The transverse shear strain above the sinusoidal microgroove is demonstrated to be resembling a Stokes spatial layer (SSL), by comparing with existing analytical solutions of strain profiles for wall-forcing by spanwise spatial oscillations. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据