4.7 Article

A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.10.003

关键词

Adaptive importance sampling; Projection-outline-based active learning; Hybrid reliability analysis; Small failure probabilities; Kriging

资金

  1. National Natural Science Foundation of China [51675196, 51721092]
  2. Program for Huazhong University of Science and Technology Academic Frontier Youth Team

向作者/读者索取更多资源

In this paper, the adaptive importance sampling (AIS) method is extended for hybrid reliability analysis under random and interval variables (HRA-RI) with small failure probabilities. In AIS, the design space is divided into random and interval variable subspaces. In random variable subspace, Markov Chain Monte Carlo (MCMC) is employed to generate samples which populate the failure regions. Then based on these samples, two kernel sampling density functions are established for estimations of the lower and upper bounds of failure probability. To improve the computational efficiency of AIS in cases with time-consuming performance functions, a combination method of projection-outline-based active learning Kriging and AIS, termed as POALK-AIS, is proposed in this paper. In this method, design of experiments is sequentially updated for the construction of Kriging metamodel with focus on the approximation accuracy of the projection outlines on the limit-state surface. During the procedure of POALK-AIS, multiple groups of sample points simulated by AIS are used to calculate the upper and lower bounds of failure probability. The accuracy, efficiency and robustness of POALK-AIS for HRA-RI with small failure probabilities are verified by five test examples. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据