4.7 Article

Ecotoxicity variation through parabens degradation by single and catalytic ozonation using volcanic rock

期刊

CHEMICAL ENGINEERING JOURNAL
卷 360, 期 -, 页码 30-37

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.11.194

关键词

Parabens toxicity; By-products; Ozonation; Catalytic ozonation; Low-cost catalysts; Ecotoxicity mitigation

资金

  1. Fundacao para a Ciencia e Tecnologia [IF/00215/2014]
  2. European Social Fund
  3. Human Potential Operational Programme
  4. CESAM [UID/AMB/50017 - POCI-01-0145-FEDER-007638]
  5. FCT/MCTES through national funds (PIDDAC)
  6. FEDER
  7. FEDER, within Compete 2020
  8. FCT [SFRH/BPD/101971/2014]

向作者/读者索取更多资源

Parabens are widely used as antimicrobial and preservative ingredients in pharmaceutical and personal care products. Nevertheless, these compounds have been increasingly seen as emerging contaminants that can be toxic to a wide range of species. In this study, the toxic effect of a mixture of parabens (10 mg/L of each paraben: methyl-, ethyl-, propyl-, benzyl- and butylparaben) and its degradation products through single and catalytic ozonation (using volcanic rock as low-cost catalyst) was investigated over several non-target species: clado-cerans, microalgae, clams, macrophytes and cress. The analysis of the toxicity of parabens mixture is relevant since usually these compounds are used as blends rather than individually. While parabens were totally removed both by single and catalytic ozonation the toxicity of the samples resulting from both treatments was generally high. This toxicity was still compared to the one obtained for several dilutions of the initial parabens mixture and it was concluded that the by-products formed are more toxic than the most diluted parabens mixture sample (0.625 mg/L). While catalytic ozonation allows reducing the amount of ozone (about 3-fold) required for total removal of parabens, the resulting treated solution was more toxic than the sample taken at the endpoint of the single ozonation treatment. This suggests that the highest amount of ozone used for single ozonation allowed the elimination of toxic by-products such as hydroquinone and 1,4-benzoquinone. Still, the effect of by-products and parabens interaction depends on the species analyzed due to their different tolerances to potentially toxic products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Do Freshwater and Marine Bivalves Differ in Their Response to Wildfire Ash? Effects on the Antioxidant Defense System and Metal Body Burden

Fatima Jesus, Filipa Mesquita, Elisa Virumbrales Aldama, Ana Marques, Ana M. M. Goncalves, Luisa Magalhaes, Antonio J. A. Nogueira, Ana Re, Isabel Campos, Joana Luisa Pereira, Fernando J. M. Goncalves, Nelson Abrantes, Dalila Serpa

Summary: This study compared the antioxidant defense response of the freshwater clam Corbicula fluminea and the marine cockle Cerastoderma edule to wildfire ash exposure and metal body burden. Both species exhibited significant changes in certain parameters after exposure to aqueous extracts of Eucalypt ash, although the effects differed between the species. Clams showed higher Cd content while cockles showed higher Cu content, indicating different responses to wildfire ash exposure.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH (2023)

Review Environmental Sciences

A review of the order mysida in marine ecosystems: What we know what is yet to be known

Ana Filipa Oliveira, Sonia Cotrim Marques, Joana Luisa Pereira, Ulisses Miranda Azeiteiro

Summary: Mysids play a crucial role in marine food chains by connecting the benthic and pelagic realms. This article provides a comprehensive overview of their taxonomy, distribution, production, and potential as a model organism in environmental research. It highlights the significance of mysids in estuarine communities, trophic webs, and their response to emergent challenges like climate change. The review emphasizes the need for further research to enhance our understanding of mysids' ecological importance, despite a lack of genomic studies.

MARINE ENVIRONMENTAL RESEARCH (2023)

Article Environmental Sciences

An Opinion on the Removal of Disinfection Byproducts from Drinking Water

Maria Ines Roque, Joao Gomes, Igor Reva, Artur J. M. Valente, Nuno E. E. Simoes, Paula V. V. Morais, Luisa Duraes, Rui C. C. Martins

Summary: Ensuring drinking water quality is crucial for public health, especially in the context of increasing industrialization. Disinfection is a key process, but it leads to the formation of unwanted disinfection byproducts (DBPs) that negatively impact human health. Stricter regulations and techniques for DBP removal have been developed, but further research is needed to monitor and control these contaminants in water distribution systems.
Article Green & Sustainable Science & Technology

Homogeneous Photosensitized Oxidation for Water Reuse in Cellars: A Study of Different Photosensitizers

Andreia D. Santos, Diana Goncalves, Rui C. Martins, Marta Gmurek, Anabela Nogueira, Sergio Castro-Silva, Luis M. Castro, Rosa Quinta-Ferreira

Summary: The increasing demand for fresh water requires industries to reduce the need for it, especially in the winemaking industry, which has a significant impact on water resources due to high water consumption and wastewater production. The sun-driven photooxidation process is widely used for wastewater treatment, and this study employed four photosensitizers to remove pollutants from wastewater for water reuse. Among the photosensitizers used, ZnPcS4 showed better removal of chemical oxygen demand (COD) and phenolic compounds (TPH). The study also evaluated the effect of pH and concentration on ZnPcS4, finding that alkaline solutions improved the removal efficiency but also caused bleaching of the photosensitizer.

SUSTAINABILITY (2023)

Article Chemistry, Physical

g-C3N4 for Photocatalytic Degradation of Parabens: Precursors Influence, the Radiation Source and Simultaneous Ozonation Evaluation

Eryk Fernandes, Pawel Mazierski, Tomasz Klimczuk, Adriana Zaleska-Medynska, Rui C. Martins, Joao Gomes

Summary: Graphitic carbon nitride (g-C3N4) catalysts were synthesized using melamine, urea, and thiourea as precursors, and their influence on photocatalytic performance was investigated. Urea-based catalyst (UCN) showed the best results under all radiation sources, followed by thiourea and melamine. UCN achieved higher degradation of parabens under UVA compared to visible light, while natural sunlight had the highest removals using UCN. UVA lamps consumed 45% less energy and costs. Photocatalytic ozonation using UCN and MCN showed superior performance and complete removal under 12 minutes.

CATALYSTS (2023)

Article Biotechnology & Applied Microbiology

Recent reports on domestic wastewater treatment using microalgae cultivation: Towards a circular economy

Sofia A. Vaz, Sara M. Badenes, Helena M. Pinheiro, Rui C. Martins

Summary: The conventional wastewater treatment process is being improved to reduce pollutant content in effluent. Microalgae cultivation on wastewater shows promise in both water purification and nutrient recovery. Further directing algal biomass to anaerobic co-digestion with wastewater sludge improves biogas yield and energy recovery. However, more data on the distribution of carbon, nitrogen, and phosphorus are needed for future studies.

ENVIRONMENTAL TECHNOLOGY & INNOVATION (2023)

Review Environmental Sciences

A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins?

Albano Pinto, Maria Joao Botelho, Catarina Churro, Jana Asselman, Patricia Pereira, Joana Luisa Pereira

Summary: Aquatic toxins, produced by certain cyanobacteria and marine algae species during harmful bloom events, are a significant concern for human and environmental health worldwide. While the direct impacts on human health receive the most attention, the effects on the wider ecosystem are often overlooked. This review aims to consolidate knowledge about the adverse effects of aquatic toxins, with a focus on their impacts on ecologically relevant model organisms.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Environmental Sciences

Evaluation of a battery of biotests to improve waste ecotoxicity assessment (HP 14), using incineration bottom ash as a case study

B. S. Bandarra, H. Passos, T. Vidal, R. C. Martins, M. J. Quina, J. L. Pereira, J. Rombke

Summary: This work aims at improving the efficiency of a biotest battery for the assessment of waste ecotoxicity. The results show the importance of testing different species and suggest shortening the test duration for daphnids and earthworms. The use of miniaturized tests and alternative testing kits to overcome methodological difficulties is also recommended. Testing waste with natural pH and using the Extended Limit Test design with the LID-approach is found to be useful for waste testing.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Engineering, Environmental

An integrated characterisation of incineration bottom ashes towards sustainable application: Physicochemical, ecotoxicological, and mechanical properties

B. S. Bandarra, C. Mesquita, H. Passos, R. C. Martins, P. A. L. F. Coelho, J. L. Pereira, M. J. Quina

Summary: This study evaluated the mechanical behavior and environmental hazardous potential of municipal solid waste incineration bottom ash (IBA), including ecotoxicity assessment, to explore its potential for safe utilization.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Environmental Sciences

Optimization of Heterogeneous Photosensitized Oxidation for Winery Effluent Treatment

Mariana Silva, Ines Oliveira-Inocencio, Rui C. Martins, Rosa Quinta-Ferreira, Marta Gmurek, Anabela Nogueira, Sergio Castro-Silva

Summary: In this study, the optimization of heterogeneous photosensitized oxidation treatment of winery effluents using chitosan carriers immobilized with Zn(II) Phthalocyanine tetrasulfonic acid was investigated. The effects of initial pH, aeration flow rate, photocatalyst load, and photosensitizer concentration on the treatment process were studied. The best reductions in COD and phenolic content (TPh) were achieved after 30 min of treatment in natural sunlight at an initial pH of 4.0 and an aeration flow rate of 2.8 L/min, with COD reduction of 45% and TPh reduction of 73%. The possibility of reusing the photocatalysts was also evaluated, and it was found that acidic pH allowed for their reuse without leaching of the photosensitizer.
Article Biochemistry & Molecular Biology

Effects of Inorganic and Organic Pollutants on the Biomarkers' Response of Cerastoderma edule under Temperature Scenarios

Andreia F. Mesquita, Fernando J. M. Goncalves, Ana M. M. Goncalves

Summary: Currently, there is a growing concern over chemical pollution and climate change worldwide. This study focuses on evaluating the effects of copper and oxyfluorfen on bivalve species, Cerastoderma edule, considering their tolerance and the changes in antioxidant defense enzymes under different temperatures. The results show that C. edule has higher tolerance to oxyfluorfen compared to copper. The antioxidant defense system effectively fights against the chemicals, but there may be neurotoxic effects at certain temperatures. Higher temperatures can lead to lipid peroxidation and increased mortality.

ANTIOXIDANTS (2023)

Article Multidisciplinary Sciences

Effective moisture diffusivity prediction in two Portuguese fruit cultivars (Bravo de Esmolfe apple and Madeira banana) using drying kinetics data

M. N. Coelho Pinheiro, Luis M. M. N. Castro

Summary: Two types of fruits cultivars produced in different regions of Portugal were used for air convective dehydration experiments at various temperatures, which were then used to predict the effective moisture diffusion. The results showed that the effective moisture diffusion in both apples and bananas increased with an increase in drying temperature.

HELIYON (2023)

Article Environmental Sciences

Low-cost materials for swine wastewater treatment using adsorption and Fenton's process

Eva Domingues, Joao Lincho, Maria J. Fernandes, Joao Gomes, Rui C. Martins

Summary: Untreated swine wastewater can have serious consequences on water quality, but physical-chemical processes can effectively improve its quality. This study evaluated the performance of four low-cost materials and found that some of them showed promising results in removing COD. Additionally, the combination of adsorption and Fenton's process yielded interesting outcomes.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)