4.6 Article

A carotenoid oxygenase is responsible for muscle coloration in scallop

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbalip.2019.03.003

关键词

Scallop; Carotenoid coloration; Muscle; Fine mapping; PyBCO-like 1

资金

  1. National Key Research and Development Project [2018YFD0900104]
  2. National Natural Science Foundation of China [31630081, 31472276]
  3. Major basic research projects of Natural Science Foundation [ZR2018ZA0748]
  4. Fundamental Research Funds for the Central Universities [201762001]
  5. Taishan Scholar Project Fund of Shandong Province of China

向作者/读者索取更多资源

As lipid microconstituents mainly of plant origin, carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Currently, the mechanism of carotenoid bioavailability in animals is largely unknown mainly due to the limited approaches applied, the shortage of suitable model systems and the restricted taxonomic focus. The mollusk Yesso scallop (Patinopecten yessoensis) possessing orange adductor muscle with carotenoid deposition, provides a unique opportunity to research the mechanism underlying carotenoid utilization in animals. Herein, through family construction and analysis, we found that carotenoid coloration in scallop muscle is inherited as a recessive Mendelian trait. Using a combination of genomic approaches, we mapped this trait onto chromosome 8, where PyBCO-like 1 encoding carotenoid oxygenase was the only differentially expressed gene between the white and orange muscles (FDR = 2.75E-21), with 11.28-fold downregulation in the orange muscle. Further functional assays showed that PyBCO-like 1 is capable of degrading beta-carotene, and inhibiting PyBCO-like 1 expression in the white muscle resulted in muscle coloration and carotenoid deposition. In the hepatopancreas, which is the organ for digestion and absorption, neither the scallop carotenoid concentration nor PyBCO-like 1 expression were significantly different between the two scallops. These results indicate that carotenoids could be taken up in both white- and orange-muscle scallops and then degraded by PyBCO-like 1 in the white muscle. Our data suggest that PyBCO-like 1 is the essential gene for carotenoid metabolism in scallop muscle, and its down regulation leads to carotenoid deposition and muscle coloration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据