4.7 Article

Molecular characterization of thioredoxin reductase in waterflea Daphnia magna and its expression regulation by polystyrene microplastics

期刊

AQUATIC TOXICOLOGY
卷 208, 期 -, 页码 90-97

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2019.01.001

关键词

Plastic pollution; Zooplankton; Oxidative defense; Gene expression

资金

  1. National Natural Science Foundation of China [31730105, 31700398]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07203-003]
  3. Natural Science Youth Foundation of Jiangsu Province [BK20170572]

向作者/读者索取更多资源

Global scale concerns regarding rise in microplastics pollution in the environment have recently aroused. Ingestion of microplastics by biota, including freshwater zooplankton has been well studied, however, despite keystone species in freshwater food webs, the molecular response (e.g. oxidative defense) of zooplankton in response to microplastics is still in its infancy. The thioredoxin (TRx) system has a vital function in cellular antioxidative defense via eliminating the excessive generation of reactive oxygen species (ROS). Therefore, it is necessary to investigate the effects of thioredoxin reductase (TRxR), due to its triggering the TRx catalysis cascade. The present study identified TRxR in Daphnia magna (Dm-TRxR) for the first time, and found that the full-length cDNA was 1862 bp long, containing an 1821-bp open reading frame. Homologous alignments showed the presence of conserved catalytic domain CVNVGC and the seleocysteine (SeCys) residue (U) located in the N- and C- terminal portions. Subsequently, the expression of Dm-TRxR, together with permease, arginine kinase (AK), was investigated by approach of quantitative real-time PCR after exposure to four (1.25-mu m) polystyrene (PS) microbeads concentrations: 0 (control), 2, 4 and 8 mg L-1 for 10 days. Dm-TRxR, permease and AK mRNA were significantly upregulated after exposure to 2, 4 mg L-1 of PS, but then declined in the presence of 8 mg L-1 PS. The gene expression results suggested that oxidative defense, energy production and substance extra cellular transportation were significantly regulated by microplastic exposure. Collectively, the present study will advance our knowledge regarding the biological effects of microplastic pollution on zooplankton, and builds a foundation for freshwater environmental studies on mechanistic and biochemical responses to microplastics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据