4.8 Article

Reduction of Interferences Using Fe-Containing Metal-Organic Frameworks for Matrix Separation and Enhanced Photochemical Vapor Generation of Trace Bismuth

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 8, 页码 5217-5224

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05893

关键词

-

资金

  1. Sichuan Youth Science and Technology Foundation [2017JQ0043]
  2. China Postdoctoral Science Foundation [2016M590870, 2018T110952]
  3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project [SKLGP2018Z003]
  4. Education Department of Sichuan Province [17ZA0040]

向作者/读者索取更多资源

Photochemical vapor generation (PVG) has emerged as a promising sample introduction method for atomic spectrometry in recent years. Despite its great success, a major impediment for the wide application of PVG is the interferences from the coexisting ions, especially transition metal ions. In this work, iron and 1,3,5-benzenetricarboxylic (Fe-BTC), a Fe-containing metal-organic framework (MOF) material, was synthesized and first used as a platform integrating the sample matrix separation, preconcentration, and photocatalysis for the highly selective determination of elements by PVG. Bismuth was selected as a model analyte. Fe-BTC served not only as the photocatalyst for the PVG of Bi3+ but also as an efficient absorbent for the separation of analytes from the sample matrix. Compared with the previous PVG system, the performance of tolerating interferences toward coexisting ions of the proposed method has been greatly improved after using Fe-BTC-based matrix separation. Thus the excess of 10 mg L-1 of Co2+ and 100 mg L-1 of Cu2+, Ni2+, and Fe3+ caused no obvious interferences for 1 mu g L-1 of Bi determination. Under the optimal conditions, the limit of detection (LOD, 3 sigma) of the developed method was 0.3 ng L-1 with the inductively coupled plasma-mass spectrometry (ICPMS) measurement, which could be lowered down to 0.04 ng L-1 after ten times of preconcentration with Fe-BTC prior to analysis. This method was successfully applied for the analysis of Bi in complicated sample matrices of soil (GBW07401), sediment (GBW07310), nickel-iron alloy (GBW01622), and nickel alloys (GBW01641) by the external calibration method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据