4.7 Article

Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 265, 期 -, 页码 1-15

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agrformet.2018.11.004

关键词

Ozone; Wheat; Soybean; Crop model; Global; Yield

资金

  1. German National Academic Foundation
  2. MACMIT project through the German Federal Ministry of Education and Research (BMBF) [01LN1317A]

向作者/读者索取更多资源

Ozone pollution can severely diminish crop yields. Its damaging effects depend, apart from ozone concentration, on crop, cultivar, water status, temperature and CO2 concentration. Previous studies estimating global yield loss from ozone pollution did not consider all of these co-factors and climate change impact studies on crop yields typically ignore ozone pollution. Here we introduce an ozone damage module for the widely used process-based crop model LPJmL. The implementation describes ozone uptake through stomata, internal detoxification and short- and long-term effects on productivity and phenology, dynamically accounting for all listed co-factors. Using this enhanced model we estimate historical global yield losses from ozone pollution for wheat and soybeans. We divide wheat into Western and Asian to account for higher ozone sensitivities in Asian types. We apply daily ozone concentrations obtained from six chemistry-transport models provided by the ACCMIP and HTAP2 projects. Our implementation of ozone damage follows expected dynamics, for example damage amplification under irrigation. The model is able to reproduce results from chamber and field studies. Historical ozone-induced losses between 2008 and 2010 vary between countries, and we estimate these between 2 and 10% of ozone-free yields for soybeans, between 0 and 27% for Western wheat and 4 and 39% for Asian wheat. Our study highlights the threat of ozone pollution for global crop production and improves over previous studies by considering co-factors of ozone damage. Uncertainties of our study include the extrapolation from rather few point observations to the globe, possible biases in ozone data, omission of sub-daily fluctuations in ozone concentration or stomatal conductance and the averaging of different cultivars across regions. We suggest performing further field-scale experimental studies of ozone effects on crops, as these are currently rare but would be particularly helpful to evaluate models and to estimate large-scale effects of ozone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据