4.7 Article

Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations

期刊

BIOINFORMATICS
卷 31, 期 13, 页码 2091-2097

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btv091

关键词

-

资金

  1. Department of Science and Technology [SR/SO/BB-0036/2011]
  2. Ministry of human resource and development (MHRD)

向作者/读者索取更多资源

Motivation: Protein engineering methods are commonly employed to decipher the folding mechanism of proteins and enzymes. However, such experiments are exceedingly time and resource intensive. It would therefore be advantageous to develop a simple computational tool to predict changes in folding rates upon mutations. Such a method should be able to rapidly provide the sequence position and chemical nature to modulate through mutation, to effect a particular change in rate. This can be of importance in protein folding, function or mechanistic studies. Results: We have developed a robust knowledge-based methodology to predict the changes in folding rates upon mutations formulated from amino and acid properties using multiple linear regression approach. We benchmarked this method against an experimental database of 790 point mutations from 26 two-state proteins. Mutants were first classified according to secondary structure, accessible surface area and position along the primary sequence. Three prime amino acid features eliciting the best relationship with folding rates change were then shortlisted for each class along with an optimized window length. We obtained a self-consistent mean absolute error of 0.36 s(-1) and a mean Pearson correlation coefficient (PCC) of 0.81. Jack-knife test resulted in a MAE of 0.42 s(-1) and a PCC of 0.73. Moreover, our method highlights the importance of outlier(s) detection and studying their implications in the folding mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据