4.5 Article

Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine

期刊

AIAA JOURNAL
卷 54, 期 1, 页码 216-226

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.J054199

关键词

-

资金

  1. Caltech Field Laboratory for Optimized Wind Energy
  2. National Science Foundation [ACI-1053575]
  3. Gordon and Betty Moore Foundation

向作者/读者索取更多资源

The immersed boundary method is used to simulate the flow around a two-dimensional cross section of a rotating NACA 0018 airfoil in order to investigate the dynamic stall occurring on a vertical axis wind turbine. The influence of dynamic stall on the force is characterized as a function of tip-speed ratio and Rossby number. The influence of the Coriolis effect is isolated by comparing the rotating airfoil to one undergoing an equivalent planar motion that is composed of surging and pitching motions that produce an equivalent speed and angle-of-attack variation over the cycle. Planar motions consisting of sinusoidally varying pitch and surge are also examined. At lower tip-speed ratios, the Coriolis force leads to the capture of a vortex pair when the angle of attack of a rotating airfoil begins to decrease in the upwind half cycle. This wake-capturing phenomenon leads to a significant decrease in lift during the downstroke phase. The appearance of this feature depends subtly on the tip-speed ratio. On the one hand, it is strengthened due to the intensifying Coriolis force, but on the other hand, it is attenuated because of the comitant decrease in angle of attack. While the present results are restricted to two-dimensional flow at low Reynolds numbers, they compare favorably with experimental observations at much higher Reynolds numbers. Moreover, the wake-capturing is observed only when the combination of surging, pitching, and Coriolis force is present.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据