4.7 Article

Long-Term-Stable Near-Infrared Polymer Dots with Ultrasmall Size and Narrow-Band Emission for Imaging Tumor Vasculature in Vivo

期刊

BIOCONJUGATE CHEMISTRY
卷 26, 期 5, 页码 817-821

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.5b00163

关键词

-

资金

  1. Chinese Natural Science Foundation [81301261, 21374059]
  2. Shanghai Pujiang Project [13PJ1405000]
  3. Ministry of Education of China [20130073120098]

向作者/读者索取更多资源

Fluorescent nanoprobes have become one of the most promising classes of materials for cancer imaging. However, there remain many unresolved issues with respect to the understanding of their long-term colloidal stability and photostability in both biological systems and the environment. In this study, we report long-term-stable near-infrared (NIR) polymer dots for in vivo tumor vasculature imaging. NIR-emitting polymer dots were prepared by encapsulating an NIR dye, silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775), into a matrix of polymer dots, poly[2-methoxy-5(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), using a nanoscale precipitation method. The prepared NIR polymer dots were sub-5 nm in diameter, exhibited narrow-band NIR emission at 778 nm with a full width at half-maximum of 20 nm, and displayed a large Stokes shift (>300 nm) between the excitation and emission maxima. In addition, no significant uptake of the prepared NIR polymer dots by either human glioblastoma U87MG cells or human non-small cell lung carcinoma H1299 cells was detected. Moreover, these NIR polymer dots showed long-term colloidal stability and photostability in water at 4 degrees C for at least 9 months, and were able to image vasculature of xenografted U87MG tumors in living mice after intravenous injection. These results thus open new opportunities for the development of whole-body imaging of mice based on NIR polymer dots as fluorescent nanoprobes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据