4.3 Article

Intersection Control Optimization for Automated Vehicles Using Genetic Algorithm

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/JTEPBS.0000197

关键词

-

资金

  1. National Science Foundation [CNS-1446813]
  2. Florida Department of Transportation [BDV31-977-45]

向作者/读者索取更多资源

With wireless communication and autonomous vehicle control capabilities, automated vehicle technology has the potential to improve the performance of an intersection. The objective of this research was to develop an intersection control algorithm that can jointly optimize the system performance and the trajectory of every single vehicle. An optimization algorithm was developed for a four-approach intersection with the consideration of turning movements and a full set of possible phases under a 100% automated vehicle environment. The intersection controller makes decisions on the vehicle passing sequence using a genetic algorithm-based optimization method, and at the same time it calculates the optimal vehicle trajectories. The optimization process repeats over a time horizon to process continually arriving vehicles. The performance of the proposed algorithm was assessed in various scenario-based simulation experiments and the results were compared with the actuated signal control. It was concluded that the proposed algorithm is able to reduce the intersection average travel time delay by 16.3% to 79.3%, depending on the demand scenario. (C) 2018 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据