4.6 Article

Purine Functional Group Type and Placement Modulate the Interaction with Carbon-Fiber Microelectrodes

期刊

ACS SENSORS
卷 4, 期 2, 页码 479-487

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.8b01504

关键词

adenine; guanine; carbon-fiber microelectrode; fast-scan cyclic voltammetry; adenosine; guanosine

资金

  1. chemistry department at the University of Cincinnati

向作者/读者索取更多资源

Purine detection in the brain with fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFME) has become increasingly popular over the past decade; despite the growing interest, an in-depth analysis of how purines interact with the CFME at fast-scan rates has not been investigated. Here, we show how the functional group type and placement in the purine ring modulate sensitivity, electron transfer kinetics, and adsorption on the carbon-fiber surface. Similar investigations of catecholamine interaction at CFME with FSCV have informed the development of novel catecholamine-based sensors and is needed for purine-based sensors. We tested purine bases with either amino, carbonyl, or both functional groups substituted at different positions on the ring and an unsubstituted purine. Unsubstituted purine showed very little to no interaction with the electrode surface, indicating that functional groups are important for interaction at the CFME. Purine nucleosides and nucleotides, like adenosine, guanosine, and adenosine triphosphate, are most often probed using FSCV due to their rich extracellular signaling modalities in the brain. Because of this, the extent to which the ribose and triphosphate groups affect the purine-CFME interaction was also evaluated. Amino functional groups facilitated the interaction of purine analogues with CFME more than carbonyl groups, permitting strong adsorption and high surface coverage. Ribose and triphosphate groups decreased the oxidative current and slowed the interaction at the electrode which is likely due to steric effects and electrostatic repulsion. This work provides insight into the factors that affect purine-CFME interaction and conditions to consider when developing purine-targeted sensors for FSCV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据