4.8 Article

Engineering of Spin Injection and Spin Transport in Organic Spin Valves Using π-Conjugated Polymer Brushes

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 26, 期 22, 页码 3999-4006

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201504201

关键词

-

资金

  1. National Science Foundation [CHE 1412714, DMR 0953112]
  2. University of Georgia
  3. Faculty Research Grant (FRG)
  4. Natural Science Foundation of China (NSFC)
  5. National Basic Research Program of China (NBRPC) [2012CB922003, 2015CB921201]
  6. Direct For Mathematical & Physical Scien
  7. Division Of Chemistry [1412714] Funding Source: National Science Foundation
  8. Division Of Materials Research
  9. Direct For Mathematical & Physical Scien [0953112] Funding Source: National Science Foundation

向作者/读者索取更多资源

Charge transport in amorphous organic semiconductors is governed by carriers hopping between localized states with small spin diffusion length. Furthermore, the interfacial resistance of organic spin valves (OSVs) is poorly controlled resulting in controversial reports of the magnetoresistance (MR) response. Here, surface-initiated Kumada transfer polycondensation is used to covalently graft pi-conjugated poly(3-methylthiophene) brushes from the La0.67Sr0.33MnO3 (LSMO) bottom electrode. The covalent attachment along with the brush morphology allows control over the LSMO/brush interfacial resistance and large spacer mobility. Remarkably, with 15 nm brush spacer layer, an optimum MR effect of 70% at cryogenic temperatures and a MR of 2.7% at 280 K are observed. The temperature dependence of the MR is nearly an order of magnitude weaker than that found in control OSVs made from spin-coated poly(3-hexylthiophene). Using a variety of different brush layer thicknesses, the thickness-dependent MR at 20 K is investigated. A spin diffusion length of 17 nm at -5 mV junction voltage rapidly increased to 48.4 nm at -260 mV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据