4.6 Article

Colloidal Synthesis of Bulk-Bandgap Lead Selenide Nanocrystals

期刊

FRONTIERS IN CHEMISTRY
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2018.00562

关键词

lead selenide; quantum dots; semiconductor; nanomaterials; conductivity

资金

  1. University of Illinois at Chicago

向作者/读者索取更多资源

Lead selenide quantum dots (QDs) are low-bandgap IV-VI semiconducting nanomaterials that have been studied for a variety of applications. Their preparation using colloidal methods can create small spherical to larger cubic nanocrystals, with an upper limit of similar to 17 nm reported to date. Here we describe methods for preparing cubic PbSe nanocrystals over a 20-40 nm size range using a twostep procedure. Specifically, similar to 10 nm PbSe QDs are generated using the rapid injection method, the products from which are overcoated with additional lead and selenium precursors. The use of two lead reagents were studied; lead oleate resulted in a maximum of 20 nm cubes, while more reactive lead hexyldecanoate resulted in much larger nanomaterials with bulk bandgaps. However, PbSe samples prepared with lead hexyldecanoate also contained agglomerates. Special care must be taken when characterizing larger strained nanomaterials with X-ray powder diffraction, for which the Scherrer equation is inadequate. A more rigorous approach using the Williamson-Hall method provides characterizations that are consistent with electron microscopy analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据