4.7 Article

Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity

期刊

PHOTONICS RESEARCH
卷 6, 期 12, 页码 1171-1176

出版社

OPTICAL SOC AMER
DOI: 10.1364/PRJ.6.001171

关键词

-

类别

资金

  1. National Natural Science Foundation of China (NSFC) [11647001, 11804004]
  2. Natural Science Foundation of Anhui Province [1708085QA11]

向作者/读者索取更多资源

The coherent light-matter interaction has drawn an enormous amount of attention for its fundamental importance in the cavity quantum-electrodynamics (C-QED) field and great potential in quantum information applications. Here, we design a hybrid C-QED system consisting of a quantum dot (QD) driven by two-tone fields implanted in a photonic crystal (PhC) cavity coupled to an auxiliary cavity with a single-mode waveguide and investigate the hybrid system operating in the weak, intermediate, and strong coupling regimes of the light-matter interaction via comparing the QD-photon interaction with the dipole decay rate and the cavity field decay rate. The results indicate that the auxiliary cavity plays a key role in the hybrid system, which affords a quantum channel to influence the absorption of the probe field. By controlling the coupling strength between the auxiliary cavity and the PhC cavity, the phenomenon of the Mollow triplet can appear in the intermediate coupling regime, and even in the weak coupling regime. We further study the strong coupling interaction manifested by vacuum Rabi splitting in the absorption with manipulating the cavity-cavity coupling under different parameter regimes. This study provides a promising platform for understanding the dynamics of QD-C-QED systems and paving the way toward on-chip QD-based nanophotonic devices. (C) 2018 Chinese Laser Press

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据