4.6 Article

Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury

期刊

ACTA PHYSIOLOGICA
卷 217, 期 2, 页码 164-173

出版社

WILEY
DOI: 10.1111/apha.12645

关键词

non-human primate; resting-state functional connectivity; resting-state functional magnetic resonance imaging; sensorimotor network; spinal cord injury

资金

  1. National Natural Science Foundation of China [31130022, 31271037, 31320103903, 91132302]
  2. National Science & Technology Pillar Program of China [2012BAI17B04]
  3. International Science & Technology Cooperation Program of China [2014DFA30640]
  4. National 863 Project [2012AA020506]
  5. National 973 Project [2012CB825500, 2012CB825503, 2015CB351701]
  6. Chinese Academy of Sciences [XDB02010001, XDB02050001]
  7. National Ministry of Education Special Fund for Excellent Doctoral Dissertation [201356]
  8. Department of Science and Technology of Beijing, China [D090800046609004]

向作者/读者索取更多资源

Aim: Given the unclear pattern of cerebral function reorganization induced by spinal cord injury (SCI), this study aimed to longitudinally evaluate the changes in resting-state functional connectivity (FC) in the sensorimotor network after SCI and explore their relationship with gait performance. Methods: Four adult female rhesus monkeys were examined using resting-state functional magnetic resonance imaging during their healthy stage and after hemitransected SCI (4, 8 and 12 weeks after SCI), and the gait characteristics of their hindlimbs were recorded (except 4 weeks after SCI). Twenty sensorimotor-related cortical areas were adopted in the FC analysis to evaluate the functional network reorganization. Correlation analyses were then used to explore the relationship between functional network variations and gait characteristic changes. Results: Compared with that during the healthy stage, the FC strength during post-SCI period was significantly increased in multiple areas of the motor control network, including the primary sensorimotor cortex, supplementary motor area (SMA) and putamen (Pu). However, the FC strength was remarkably reduced in the thalamus and parieto-occipital association cortex of the sensory network 8 weeks after SCI. Most FC intensities gradually approached the normal level 12 weeks after the SCI. Correlation analyses revealed that the enhanced FC strength between Pu and SMA in the left hemisphere, which regulates motor functions of the right side, was negatively correlated with the gait height of the right hindlimb. Conclusion: The cerebral functional network presents an adjust-recover pattern after SCI, which may help us further understand the cerebral function reorganization after SCI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据