4.6 Article

Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 7, 期 7, 页码 6580-6591

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.8b05473

关键词

Chemicals; Life cycle inventory; Sustainability; Healthcare

资金

  1. U.S. National Science Foundation, under CAREER award [CBET-1454414]

向作者/读者索取更多资源

Comparative life-cycle assessment (LCA) of pharmaceutical drugs would enable clinicians to choose alternatives with lower environmental impact from options offering equivalent efficacies and comparable costs. However, life-cycle inventory (LCI) data of individual pharmaceutical drugs is limited to only a few compounds. In this study, we use chemical engineering methods for process scale-up and process design to utilize lab-scale synthesis data, available in patents and other public literature, to generate cradle-to-gate LCI data of 20 commonly used injectable drugs in anesthesia care to calculate their greenhouse gas impact. During the process of building the life-cycle trees of these drugs, missing life-cycle inventories for more than 130 other chemical compounds and pharmaceutical intermediates were accounted for using process based methods and stoichiometric calculations. The cradle-to-gate GHG emissions of the 20 anesthetic drugs range from 11 kg CO2 eq. for succinylcholine to 3,000 kg CO2 eq. for dexmedetomidine. GHG emissions are positively correlated with the number of synthesis steps in the manufacturing of the drug. The LCI methods and data generated in this work greatly expand the available environmental data on APIs and can serve as a guide for LCA practitioners in future analysis of other pharmaceutical drugs. Most importantly, these LCA results can be used by clinical practitioners and administrators building toward sustainability in the health care sector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据