4.6 Article

Rapidly Pulsed Pumping Accelerates Remediation in A Vertical Circulation Well Model

期刊

WATER
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/w10101423

关键词

groundwater remediation; groundwater hydrology; pump-and-treat remediation; dead-end pores

资金

  1. National Science Foundation Graduate Teaching Fellows in K-12 STEM Education grant
  2. Duke University Pratt School of Engineering, Department of Civil and Environmental Engineering

向作者/读者索取更多资源

One factor that slows groundwater remediation is the sequestration of contaminant in dead-end pores, that is, pores that are not flushed through by flow through the aquifer. Furthermore, rebound of apparently remediated aquifers can occur as a result of the eventual release of the contaminant trapped in these dead-end pores. Since the operational costs generally outweigh the capital costs of a remediation project, reduction of the duration of treatment should reduce the overall cost of the average remediation. It has been shown that a rapidly pulsed flow can increase the mixing between dead-end and well-connected pores through computational fluid dynamics models with idealized pore geometry and column tests. A rapidly pulsed flow induces a deep sweep upon a sudden increase in velocity and a vortex ejection upon a sudden decrease in velocity that substantially accelerates the remediation of contaminant from these dead-end pores. To examine rapidly pulsed pumping in a more realistic configuration, a model vertical circulation well was constructed. The porous medium was well-sorted crushed glass to minimize sorption. Removal of a fluorescent dye, which represents a dissolved contaminant, under a rapidly pulsed flow was compared to a steady flow. The modeled well revealed accelerated removal of dissolved contaminants under a rapidly pulsed flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据