4.6 Article

Evaluating the Impaction of Coal Mining on Ordovician Karst Water through Statistical Methods

期刊

WATER
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/w10101409

关键词

Heilongdong spring area; innovative trend analysis; Mann-Kendall test; multivariate linear regression analysis; wavelet coherence

资金

  1. Innovation Fund General project of Xi'an Research Institute Company of China Coal Technology and Engineering Group [2015XAYMS17]
  2. National Key Research and Development Program of China [2017YFC0804102]

向作者/读者索取更多资源

This study aims to reveal karst water trend change and the variation of affecting factors in the Heilongdong spring area due to long-term coal mining. In this study, five yearly recoded data over more than 40 years were collected, including underground water level dynamics, water flow, groundwater withdrawal for industrial and agricultural production and domestic production (groundwater withdrawal), mine drainage and rainfall. On that basis, we conducted linear regression, innovative trend analysis (ITA) and the Mann-Kendall method to quantitative analyze the trend and mutation sequence of the time series of environmental hydrological parameters in the study area. To determine the correlation of different affecting parameters under coal mining, as well as the trend of the correlation, we conducted multivariate linear regression analysis and exploited wavelet coherence. The results suggest: (1) under human influence, the annual value of underground water level in the Heilongdong spring area shows an insignificant decrease of 0.42 m/a; precipitation shows a significant downward trend of 2.34 mm/a, primarily the decrease of rainstorm; the spring flow shows a significant decrease of 9.41 x 106 m(3)/a, and springs with different flow show a significant decrease. (2) The abrupt changes of various factors affecting spring flow in the study area were successively delayed by rainfall, mine drainage rate, industrial and agricultural water consumption and underground water level. (3) Since the year of the start of dramatic changes, under the impact of increased manual mining and mine drainage, the amount of spring overflow has decreased, the groundwater level has decreased, and the groundwater dynamics have varied from meteorological type to meteorology-artificial type. Moreover, the factors affecting the dynamic changes of groundwater have been changed to rainfall and artificial mining and drainage. (4) As the results of Wavelet coherence analysis suggest, the spring flow resonates significantly with rainfall from the period of 3a to 15a. The correlation between the original spring flow and groundwater level is more obvious than that between the original spring flow and rainfall. The correlation between residual flow and groundwater level is less obvious than that between residual flow and rainfall. The above results provide a basis for comprehensively exploiting water resources in coal mining areas and regional groundwater resources protection measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据