4.7 Article

Glucose Oxidase Immobilized on a Functional Polymer Modified Glassy Carbon Electrode and Its Molecule Recognition of Glucose

期刊

POLYMERS
卷 11, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/polym11010115

关键词

glucose oxidase; direct electrochemistry; functional polymer; aminated polyethylene glycol

资金

  1. Natural Science Foundation of Henan Province [182300410217]
  2. Henan University Science Foundation [Y1425013]

向作者/读者索取更多资源

In the present study, a glucose oxidase (GluOx) direct electron transfer was realized on an aminated polyethylene glycol (mPEG), carboxylic acid functionalized multi-walled carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymer modified glassy carbon electrode (GCE). The amino groups in PEG, carboxyl groups in multi-walled carbon nanotubes, and IL may have a better synergistic effect, thus more effectively adjust the hydrophobicity, stability, conductivity, and biocompatibility of the composite functional polymer film. The composite polymer membranes were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectrophotometer, fluorescence spectroscopy, electrochemical impedance spectroscopy (EIS), and transmission electron microscopy (TEM), respectively. In 50 mM, pH 7.0 phosphate buffer solution, the formal potential and heterogeneous electron transfer constant (k(s)) of GluOx on the composite functional polymer modified GCE were -0.27 V and 6.5 s(-1), respectively. The modified electrode could recognize and detect glucose linearly in the range of 20 to 950 M with a detection limit of 0.2 M. The apparent Michaelis-Menten constant (K-m(app)) of the modified electrode was 143 M. The IL/mPEG-fMWCNTs functional polymer could preserve the conformational structure and catalytic activity of GluOx and lead to high sensitivity, stability, and selectivity of the biosensors for glucose recognition and detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据