4.7 Article

Some Key Factors Influencing the Flame Retardancy of EDA-DOPO Containing Flexible Polyurethane Foams

期刊

POLYMERS
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/polym10101115

关键词

flexible polyurethane foam; flame retardant; bridged-DOPO compounds; microscale combustion analysis; thermal analysis

资金

  1. Commission for Technology and Innovation, Switzerland
  2. Swiss National Science Foundation [206021_150638/1]
  3. COST Action Agnieszka Przystas short-term scientific mission in Pole Materiaux Polymeres Avances Centre des Materiaux at the Ecole des mines d'Ales, France [MP1105]

向作者/读者索取更多资源

The role of various additives (emulsifier, anti-dripping agent) and formulation procedures (pre-dispersion of solid additives in polyol via milling) which influence the flame retardancy of 6,6-[ethan-1,2-diylbis(azandiyl)]bis(6H-dibenzo[c,e][1,2]oxaphosphin-6-oxid) (EDA-DOPO) containing flexible polyurethane foams has been investigated in this work. For comparison, the flame retardancy of two additional structurally-analogous bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based compounds, i.e., ethanolamine-DOPO (ETA-DOPO) and ethylene glycol-DOPO (EG-DOPO) were also evaluated together with EDA-DOPO in flexible PU foams of various formulations. The flame retardancy of these three bridged-DOPO compounds depends on the type of PU formulation. For certain PU formulations containing EDA-DOPO, lower fire performance was observed. Addition of emulsifier and polytetrafluoroethylene (PTFE) to these PU formulations influenced positively the flame retardancy of EDA-DOPO/PU foams. In addition, dispersion of EDA-DOPO and PTFE via milling in polyol improved the flame retardancy of the PU foams. Mechanistic studies performed using a microscale combustion calorimeter (MCC) and its coupling to FTIR showed no difference in the combustion efficiency of the bridged-DOPO compounds in PU foams. From MCC experiments it can be concluded that these bridged-DOPO compounds and their decomposition products may work primarily in the gas phase as flame inhibitors. The physiochemical behavior of additives in PU formulation responsible for the improvement in the flame retardancy of PU foams was further investigated by studying the dripping behavior of the PU foams in the UL 94 HB test. A high-speed camera was used to study the dripping behavior in the UL 94 HB test and results indicate a considerable reduction of the total number of melt drips and flaming drips for the flame retardant formulations. This reduction in melt drips and flaming drips during the UL 94 HB tests help PU foams achieve higher fire classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据