4.3 Article

Fabrication of Stabilized Fe-Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors

出版社

MDPI
DOI: 10.3390/ijerph15102218

关键词

stabilized Fe-Mn binary oxide nanoparticles; oxidation; 17 beta-estradiol; adsorption

资金

  1. National Natural Science Foundation of China [51521006, 51609268]
  2. Hunan Provincial Innovation Foundation for Postgraduate [CX2016B135]
  3. Key Project of Technological Innovation in the Field of Social Development of Hunan Province, China [2016SK2010, 2016SK2001]

向作者/读者索取更多资源

Fe-Mn binary oxide nanoparticles (FMBON) were reported to be high performance as adsorbent for pollutants removal from aqueous solution. However, there are still limitations in practice application due to the FMBON tend to aggregate into the micro millimeter level. In order to avoid the agglomeration of nanoparticles, this work synthesized the stabilized Fe-Mn binary oxide nanoparticles (CMC-FMBON) by using water-soluble carboxymethyl celluloses (CMC) as the stabilizer. The characteristics of CMC-FMBON and FMBON were measured by using Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and Zeta potential. This work systematically investigated the adsorption capacity of CMC-FMBON for 17 beta-estradiol (E2) and the influences of external environmental factors on E2 removal. The results indicated that CMC-FMBON had much smaller particles, wider dispersion and larger surface area than the FMBON. CMC-FMBON showed better adsorption performance for E2 than FMBON with the maximum adsorption capacity of CMC-FMBON and FMBON were 124.10 and 98.14 mg/g at 298 K, respectively. The experimental data can be well fitted by the model of pseudo-second-order and Langmuir model. The E2 removal by CMC-FMBON was obviously dependent on pH with the maximum adsorption occurring when the pH was acidic. The removal capacity of CMC-FMBON increased when enhancing ionic strength in solution. Background electrolytes promoted slightly E2 adsorption process whereas the presence of humic acid inhibited the E2 removal. pi-pi interactions, hydrogen bonds, and oxidation might be responsible for E2 removal. This research suggested that the CMC-FMBON has been considered to be a cost-efficient adsorbent for removing E2 from water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据