4.7 Article

AtHKT1 gene regulating K+ state in whole plant improves salt tolerance in transgenic tobacco plants

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-34660-9

关键词

-

资金

  1. Special funds for discipline construction of Gansu Agricultural University [GSAU-XKJS-2018-161]
  2. National Natural Science Foundation of China [31760407]
  3. China Agriculture Potato Research System [CARS-09-P14]
  4. Natural Science Foundation of Gansu province of China [1606RJZA019]
  5. Biological Technology Fund of Gansu province of China [GNSW-2016-27]
  6. Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University [GSCS-2017-3]

向作者/读者索取更多资源

The status of K+ is important for plant health. However, little is known about if high-affinity potassium transporter HKTs may help K+ retention under salt stress. Here, we determined the effect of Arabidopsis thaliana transporter gene (AtHKT1) on the K+ status, Na+-induced toxicity, and salt tolerance in tobacco (Nicotiana tabacum L.). Six AtHKT1 transformed tobacco lines (T1, T2,... T6) were contrasted with a non-transgenic plantlet at the whole-plant and molecule levels. AtHKT1 gene was expressed in the xylems of stem, root and leaf vein in the transgenic tobacco, with the line T3 having highest expression. At Day 15, in the 200 mmol L-1 NaCl stress treatment, the transgenic plants remained a healthy K+ status, while the control plants decreased K+ content by 70% and Na+ contents in leaves and stems were 1.7 times that in the transgenic line. The AtHKT1 expression enhanced the activities of SOD, CAT and POD, raised chlorophyll and soluble sugar contents and root activity, and decreased MDA and proline contents and electrolyte leakage destruction. The constitutive over-expression of AtHKT1 that helps maintain a healthy K+ status while reducing Na+ toxicity may serve as a possible mechanism in maximizing productivity of tobacco under salt stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据