4.8 Article

Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells

期刊

ADVANCED ENERGY MATERIALS
卷 9, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201802686

关键词

alkylthiolation; miscibility; nonfullerene; polymer solar cells; steric effects

资金

  1. National Natural Science Foundation of China (NSFC) [21774003]
  2. Beihang University Youth Talent Support Program [YWF-18-BJ-J-218]

向作者/读者索取更多资源

Morphology and miscibility control are still a great challenge in polymer solar cells. Despite physical tools being applied, chemical strategies are still limited and complex. To finely tune blend miscibility to obtain optimized morphology, chemical steric engineering is proposed to systemically investigate its effects on optical and electronic properties, especially on a balance between crystallinity and miscibility. By changing the alkylthiol side chain orientation different steric effects are realized in three different polymers. Surprisingly, the photovoltaic device of the polymerPTBB-m with middle steric structure affords a better power conversion efficiency, over 12%, compared to those of the polymers PTBB-o and PTBB-p with large or small steric structures, which could be attributed to a more balanced blend miscibility without sacrificing charge-carrier transport. Space charge-limited current, atomic force microscopy, grazing incidence wide angle X-ray scattering, and resonant soft X-ray scattering measurements show that the steric engineering of alkylthiol side chains can have significant impacts on polymer aggregation properties, blend miscibility, and photovoltaic performances. More important, the control of miscibility via the simple chemical approach has preliminarily proved its great potential and will pave a new avenue for optimizing the blend morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据