4.8 Article

Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-018-07671-3

关键词

-

资金

  1. National Science Foundation [IOS-1546617, MCB-1714093, MCB-1714236]
  2. Michigan AgBioResearch
  3. USDA National Institute of Food and Agriculture, Hatch project [MICL02552, MICL02474]
  4. Michigan State University Plant Breeding, Genetics and Biotechnology Graduate Program

向作者/读者索取更多资源

Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1] octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root-expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N-methyl-Delta(1)-pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarboxylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna. This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non-tropane producing plant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据