4.8 Article

Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-07865-9

关键词

-

资金

  1. Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) [DE-FC02-97ER62402]
  2. National Science Foundation
  3. Australian Research Council Centre of Excellence for Climate Extremes [CE170100023]
  4. Australian Government
  5. Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory - National Science Foundation

向作者/读者索取更多资源

After nearly three decades of observed increasing trends of Antarctic sea ice extent, in September-October-November 2016, there was a dramatic decrease. Here we document factors that contributed to that decrease. An atmosphere-only model with a specified positive convective heating anomaly in the eastern Indian/western Pacific Ocean, representing the record positive precipitation anomalies there in September-October-November 2016, produces an anomalous atmospheric Rossby wave response with mid- and high latitude surface wind anomalies that contribute to the decrease of Antarctic sea ice extent. The sustained decreases of Antarctic sea ice extent after late 2016 are associated with a warmer upper Southern Ocean. This is the culmination of a negative decadal trend of wind stress curl with positive Southern Annular Mode and negative Interdecadal Pacific Oscillation, Ekman suction that results in warmer water being moved upward in the column closer to the surface, a transition to positive Interdecadal Pacific Oscillation around 2014-2016, and negative Southern Annular Mode in late 2016.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据