4.8 Article

Probing molecule-like isolated octahedra via-phase stabilization of zero-dimensional cesium lead halide nanocrystals

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-07097-x

关键词

-

资金

  1. Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2017R1A2B3011967]
  2. Engineering Research Center through National Research Foundation of Korea (NRF) - Korean Government (MSIT) [NRF-2018R1A5A1025224]

向作者/读者索取更多资源

Zero-dimensional (0D) inorganic perovskites have recently emerged as an interesting class of material owing to their intrinsic Pb2+ emission, polaron formation, and large exciton binding energy. They have a unique quantum-confined structure, originating from the complete isolation of octahedra exhibiting single-molecule behavior. Herein, we probe the optical behavior of single-molecule-like isolated octahedra in 0D Cesium lead halide (Cs4PbX6, X = Cl, Br/Cl, Br) nanocrystals through isovalent manganese doping at lead sites. The incorporation of manganese induced phase stabilization of 0D Cs4PbX6 over CsPbX3 by lowering the symmetry of PbX6 via enhanced octahedral distortion. This approach enables the synthesis of CsPbX3 free Cs4PbX6 nanocrystals. A high photoluminescence quantum yield for manganese emission was obtained in colloidal (29%) and solid (21%, powder) forms. These performances can be attributed to structure-induced confinement effects, which enhance the energy transfer from localized host exciton states to Mn2+ dopant within the isolated octahedra.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据