4.7 Article

Septin filament coalignment with microtubules depends on SEPT9_i1 and tubulin polyglutamylation, and is an early feature of acquired cell resistance to paclitaxel

期刊

CELL DEATH & DISEASE
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41419-019-1318-6

关键词

-

资金

  1. Institut Paris-Sud d'Innovation Therapeutique
  2. Ministere de l'Enseignement Superieur et de la Recherche
  3. Comite des Hauts de Seine of the Ligue contre le Cancer
  4. Ministere de la Recherche

向作者/读者索取更多资源

Cancer cell resistance to taxanes is a complex, multifactorial process, which results from the combination of several molecular and cellular changes. In breast cancer cells adapted to long-term paclitaxel treatment, we previously identified a new adaptive mechanism that contributes to resistance and involves high levels of tubulin tyrosination and long-chain polyglutamylation coupled with high levels of septin expression, especially that of SEPT9_i1. This in turn led to higher CLIP-170 and MCAK recruitment to microtubules to enhance microtubule dynamics and therefore counteract the stabilizing effects of taxanes. Here, we explored to which extent this new mechanism alone could trigger taxane resistance. We show that coupling septins (including SEPT9_i1) overexpression together with long-chain tubulin polyglutamylation induce significant paclitaxel resistance in several naive (taxane-sensitive) cell lines and accordingly stimulate the binding of CLIP-170 and MCAK to microtubules. Strikingly, such resistance was paralleled by a systematic relocalization of septin filaments from actin fibers to microtubules. We further show that this relocalization resulted from the overexpression of septins in a context of enhanced tubulin polyglutamylation and reveal that it could also be promoted by an acute treatment with paclitaxel of sensitve cell displaying a high basal level of SEPT9_i1. These findings point out the functional importance and the complex cellular dynamics of septins in the onset of cell resistance to death caused by microtubule-targeting antimitotic drugs of the taxane family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据