4.7 Article

Microfluidic exponential rolling circle amplification for sensitive microRNA detection directly from biological samples

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 279, 期 -, 页码 447-457

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2018.09.121

关键词

Microfluidic exponential rolling circle; amplification (MERCA); microRNA detection; Raw cell lysate; Cell-derived exosomes; Complex biological samples

资金

  1. NIH [1R21EB024101, 1R21CA186846, 1R33CA214333, 1R21CA207816, P20GM103638]
  2. Kansas IDeA Network of Biomedical Research Excellence (K-INBRE) from NIH/NIGMS [P20GM103418]

向作者/读者索取更多资源

There is an urgent need of sensitive bioanalytical platforms for sensitive and precise quantification of low-abundance microRNA targets in complex biological samples, including liquid biopsies of tumors. Many of current miRNA biosensing methods require laborious sample pretreatment procedures, including extraction of total RNA, which largely limits their biomedical and clinical applications. Herein we developed an integrated Microfluidic Exponential Rolling Circle Amplification (MERCA) platform for sensitive and specific detection of microRNAs directly in minimally processed samples. The MERCA system integrates and streamlines solid-phase miRNA isolation, miRNA-adapter ligation, and a dual-phase exponential rolling circle amplification (eRCA) assay in one analytical workflow. By marrying the advantages of microfluidics in leveraging bioassay performance with the high sensitivity of eRCA, our method affords a remarkably low limit of detection at < 10 zeptomole levels, with the ability to discriminate single-nucleotide difference. Using the MERCA chip, we demonstrated quantitative detection of miRNAs in total RNA, raw cell lysate, and cell-derived exosomes. Comparing with the parallel TaqMan RT-qPCR measurements verified the adaptability of the MERCA system for detection of miRNA biomarkers in complex biological materials. In particular, high sensitivity of our method enables direct detection of low-level exosomal miRNAs in as few as 2 x 10(6) exosomes. Such analytical capability immediately addresses the unmet challenge in sample consumption, a key setback in clinical development of exosome-based liquid biopsies. Therefore, the MERCA would provide a useful platform to facilitate miRNA analysis in broad biological and clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Organic

The metal tin promoted cascade reaction of ketones in aqueous media for the construction of 2-bromo-4-aryl-1,3-pentadiene

Lingyan Liu, Yan Zhang, Hua Zhang, Kaimeng Huang, Bo-xin Gao, Min Zou, Xin Zhou, Hongkai Wang, Jing Li

ORGANIC & BIOMOLECULAR CHEMISTRY (2014)

Article Engineering, Biomedical

Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip

Peng Zhang, Xin Zhou, Mei He, Yuqin Shang, Ashley L. Tetlow, Andrew K. Godwin, Yong Zeng

NATURE BIOMEDICAL ENGINEERING (2019)

Article Chemistry, Analytical

Microfluidic circulating reactor system for sensitive and automated duplex-specific nuclease-mediated microRNA detection

Xin Zhou, Hongmei Cao, Yong Zeng

Summary: In this study, a pneumatically automated microfluidic reactor device was designed to integrate analyte extraction/enrichment and DSNSA-mediated miRNA detection in a streamlined analysis workflow, achieving rapid and robust on-chip detection of miR-21 with reduced consumption of DSN enzyme. The optimized workflow demonstrated a limit-of-detection of 35 amol and has potential applications in clinical diagnosis and beyond.

TALANTA (2021)

Review Biochemical Research Methods

Advances in microfluidic extracellular vesicle analysis for cancer diagnostics

Shibo Cheng, Yutao Li, He Yan, Yunjie Wen, Xin Zhou, Lee Friedman, Yong Zeng

Summary: Extracellular vesicles, including exosomes, play a significant role in cancer diagnosis and therapeutic monitoring by carrying a selective set of biomolecules from tumor cells. Microfluidics offers a disruptive platform for EV isolation and analysis due to its advantages in promoting the development of new molecular and cellular sensing systems with improved sensitivity and specificity. Despite current challenges in EV research, adapting microfluidic techniques shows promise in assessing emerging EV-associated biomarkers for clinical applications.

LAB ON A CHIP (2021)

Article Biochemical Research Methods

A microfluidic alternating-pull-push active digitization method for sample-loss-free digital PCR

Xin Zhou, Gopi Chandran Ravichandran, Peng Zhang, Yang Yang, Yong Zeng

LAB ON A CHIP (2019)

Article Biochemical Research Methods

Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip

Peng Zhang, Jennifer Crow, Divya Lella, Xin Zhou, Glenson Samuel, Andrew K. Godwin, Yong Zeng

LAB ON A CHIP (2018)

Article Chemistry, Analytical

MEMS sensor based on MOF-derived WO3-C/In2O3 heterostructures for hydrogen detection

Mengmeng Guo, Na Luo, Yueling Bai, Zhenggang Xue, Qingmin Hu, Jiaqiang Xu

Summary: A porous heterostructure WO3-C/In2O3 was designed and prepared for a miniature H2 sensor, which showed higher response value, lower operating temperature, fast response-recovery speed, and low limit of detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Signal amplification strategy by chitosan-catechol hydrogel modified paper electrode for electrochemical detection of trace arsenite

Feng Hu, Hui Hu, Yuting Li, Xiaohui Wang, Xiaowen Shi

Summary: Arsenic contamination in water bodies is a significant health risk. This study developed a chitosan-catechol modified electrode for rapid and accurate detection of trace amounts of arsenic. The modified electrode demonstrated good detection capability and resistance to ionic interference, making it suitable for in situ detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A buffering fluorogenic probe for real-time lysosomal pH monitoring

Yantao Zhang, Qian Liu, Tao Tian, Chunhua Xu, Pengli Yang, Lianju Ma, Yi Hou, Hui Zhou, Yongjun Gan

Summary: In this study, a lysosome-targeting buffering fluorogenic probe (Lyso-BFP) was designed and synthesized, demonstrating excellent photostability, pH specificity, and responsiveness to lysosomal acidification in living cells. The performance of Lyso-BFP in pH sensing was attributed to the inhibition of the photo-induced electron transfer process. Lyso-BFP allowed for wash-free imaging and long-term real-time monitoring of lysosome pH changes based on its off-on fluorescence behavior and buffer strategy.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Rational design of α-glucosidase activated near-infrared fluorescent probe and its applications in diagnosis and treatment of diabetes

Wei Cai, Wenbo Sun, Jiayue Wang, Xiaokui Huo, Xudong Cao, Xiangge Tian, Xiaochi Ma, Lei Feng

Summary: In this study, a near-infrared fluorescent probe HCBG was developed for imaging of alpha-GLC. HCBG exhibited excellent selectivity and sensitivity towards alpha-GLC in complex bio-samples, and showed good cell permeability for in situ real-time imaging. Through the high-throughput screening system established by HCBG, a natural alpha-GLC inhibitor was successfully isolated and identified. This study provides a novel fluorescence visualization tool for discovering and exploring the biological functions of diabetes-related gut microbiota, and a high-throughput screening approach for alpha-GLC inhibitor.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Electrochemical immunosensor for the quantification of galectin-3 in saliva

Trey W. Pittman, Xi Zhang, Chamindie Punyadeera, Charles S. Henry

Summary: Heart failure is a growing epidemic and a significant clinical and public health problem. Researchers have developed a portable and affordable diagnostic device for heart failure that can be used at the point-of-care, providing a valid alternative to current diagnostics approaches.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Optical hydrogen peroxide sensor for measurements in flow

Anders O. Tjell, Barbara Jud, Roland Schaller-Ammann, Torsten Mayr

Summary: An optical hydrogen peroxide sensor based on catalytic degradation and the detection of produced oxygen is presented. The sensor offers higher resolution and better sensitivity at lower H2O2 concentrations. By removing O2 from the sample solution, a more sensitive O2 sensor can be used for measurement. The sensor has been successfully applied in a flow-through cell to measure H2O2 concentration in different flow rates.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Engineered vertically-aligned carbon nanotube microarray for self-concentrated SERS detection

Seong Jae Kim, Ji-hun Jeong, Gaabhin Ryu, Yoon Sick Eom, Sanha Kim

Summary: Surface-enhanced Raman spectroscopy (SERS) is a high-sensitivity, label-free detection method with various analytical applications. Researchers have developed a hydrophobic SERS substrate based on engineered carbon nanotube arrays (CNT-SERS) and studied the role of structural design at both micro and nanoscales. The substrate demonstrated controlled self-enrichment capability and enhanced sensitivity, with a significant increase in the SERS signal. The study also proposed a theoretical model and a concentration strategy inspired by plants for analyte deposition on microarrays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Flexible enzyme-like platform based on a 1-D CeVO4/2-D rGO-MCC heterostructure as sensor for the detection of intracellular superoxide anions

Dan Zhao, Renjun Jiang, Xiaoqiang Liu, Subbiah Alwarappan

Summary: In this study, a novel ternary composite material was constructed by assembling cerium vanadate nanorods on reduced graphene oxide-microcrystalline cellulose nanosheets, and it was used for real-time monitoring of the concentration of superoxide anions in vivo. The ternary composite showed excellent conductivity, large surface area, and abundant active sites, leading to a wider linear range, high sensitivity, low detection limit, and fast response time for superoxide anion detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Covalent organic framework enhanced aggregation-induced emission of berberine and the application for detection

Tengfei Wang, Liwen Wang, Guang Wu, Dating Tian

Summary: In this study, a covalent organic framework material TaTp-COF with porous and uniform spheres was successfully prepared via hydrothermal reaction, and it was found to significantly enhance the aggregation-induced emission (AIE) of berberine. The unique emission properties of berberine on TaTp-COF were studied and utilized for the sensitive detection of berberine.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Visualized time-temperature monitoring by triplet-sensitized ratiometric fluorescent nanosensors

Lin Li, Yilei Ding, Lei Xu, Shuoran Chen, Guoliang Dai, Pengju Han, Lixin Lu, Changqing Ye, Yanlin Song

Summary: In this study, a novel TTI based on a ratiometric fluorescent nanosensor is designed, which has the advantages of high accuracy and low cost. Experimental and theoretical investigations confirm its pH responsiveness and demonstrate its good sensitivity and reliability. By monitoring the total volatile basic nitrogen, this TTI can accurately predict food spoilage and can be adaptively modified for different types of food. The TTI based on this nanosensor enables visual monitoring of food quality.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A fluorescent prodrug to fight drug-resistant lung cancer cells via autophagy-driven ferroptosis

Fangju Chen, Xueting Wang, Wei Chen, Chenwen Shao, Yong Qian

Summary: Lung cancer is the second most common malignant tumor worldwide. Drug resistance in lung cancer leads to treatment failure and recurrence in majority of patients. This study developed a fluorescent prodrug that can be activated in cancer cells to release drugs, and its signal can be tracked by imaging. It shows a unique autophagy-driven ferroptosis effect, indicating its potential for targeting drug-resistant cancer cells.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

ZnO quantum dots sensitized ZnSnO3 for highly formaldehyde sensing at a low temperature

Weichao Li, Qiming Yuan, Zhangcheng Xia, Xiaoxue Ma, Lifang He, Ling Jin, Xiangfeng Chu, Kui Zhang

Summary: This study developed a high-performance gas sensor for formaldehyde detection by modifying ZnSnO3 with ZnO QDs and SnO2 QDs. The modified sensor showed improved sensing response and lower working temperature. The presence of ZnO QDs formed rich heterojunctions, increased surface area, and provided oxygen deficiency for formaldehyde sensing reaction, thus enhancing the sensor performance. This research provides an alternative method to enhance the sensing properties of MOS by QDs modification.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks

Joung-Il Moon, Eun Jung Choi, Younju Joung, Jin-Woo Oh, Sang-Woo Joo, Jaebum Choo

Summary: A novel nanoplasmonic substrate was developed for biomedical applications, which showed strong hot spots for detecting biomarkers at low concentrations. The substrate, called AuNPs@M13, was made by immobilizing 60 nm gold nanoparticles onto the surface of an M13 bacteriophage scaffold. It demonstrated higher sensitivity and lower limit of detection compared to commercially available assays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Single-atom Cu-attached MOFs as peroxide-like enzymes to construct dual-mode immunosensors for detection of breast cancer typing in serum

Ning Li, Ya Zhang, Ying Xu, Xiaofang Liu, Jian Chen, Mei Yang, Changjun Hou, Danqun Huo

Summary: The molecular subtype of breast cancer guides treatment and drug selection. Invasive tests can promote cancer cell metastasis, so the development of high-performance, low-cost diagnostic tools for cancer prognosis is crucial. Liquid biopsy techniques enable noninvasive, real-time, dynamic, multicomponent, quantitative, and long-term observations at the cellular, genetic, and molecular levels. A Cu-Zr metal-organic framework (MOF) nanoenzyme with monatomic Cu attachment has been synthesized and proven to have high catalytic performance. The sensor constructed using this nanoenzyme shows potential for accurate classification of breast cancer serum samples.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Individually-addressable composite microneedle electrode array by mold-and-place method for glucose detection

Jeongmin Kim, Hyemin Kim, Seunghyun Park, Hyeonaug Hong, Yong Jae Kim, Jiyong Lee, Jaeho Kim, Seung-Woo Cho, Wonhyoung Ryu

Summary: This study presents a method to fabricate independently functioning microneedle (MN) electrodes with narrow intervals for high precision electrochemical sensing. The optimized mixture of photocurable polymer and single-wall carbon nanotubes was used to mold single composite MNs, which were then attached to pre-patterned electrodes. Plasma etching and electropolymerization were performed to enhance the electrochemical activity, and Prussian blue and glucose oxidase were electrodeposited on the MNs for glucose detection. The MN electrodes showed good sensitivity and linearity, and the feasibility of glucose detection was demonstrated in an in vivo mouse study.

SENSORS AND ACTUATORS B-CHEMICAL (2024)