4.7 Article

Phytoplankton response to climate changes and anthropogenic activities recorded by sedimentary pigments in a shallow eutrophied lake

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 647, 期 -, 页码 1398-1409

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.08.081

关键词

Algae succession; Anthropogenic activities; Climate change; Generalized additive models; Phytoplankton pigments

资金

  1. National Key Research and Development Program of China [2017YFA0605003]
  2. National Natural Science Foundation of China [91751114, 41521003]

向作者/读者索取更多资源

Studies that address the potential effects of climate and anthropogenic activities on lacustrine phytoplankton succession are scarce in the shallow lakes. In the present work, the succession of phytoplankton community inferred from sedimentary pigments has been investigated; the impacts of climate and anthropogenic activities on the succession have been evaluated by the generalized additive models (GAMs) in a shallow eutrophied lake, Lake Chaohu, located eastern China. The results show that phytoplankton succession can be divided into two periods: pre-1960s and post 1960s. The mean values of beta beta Car and Chl a increased after the 1960s at both sites sampled, from 0.013 to 0.359, and 0.013 to 1.382 mu g g(-1), respectively (site C4), and from 0.015 to 0.530, and 0.010 to 0.921 mu g g(-1), respectively (site C14), reflecting significant increases of primary productivity since the 1960s. The percentage of diatoms and dinoflagellates preserved in sediments decreased from similar to 90% to similar to 15% since the 1960s, while cyanobacteria and green algae increased from similar to 5% to similar to 35%, respectively, reflecting the shift of the lake phytoplankton community. This succession was related to construction of the Chaohu Dam in 1963, increasing discharges of anthropogenic N and P into the Lake, and a generally warming environment as reflected by increasing average air temperatures. The results of GAMs showed aquatic total phosphorus (TP) concentration is the dominant contributor to phytoplankton community change, explaining 42.74%, 40.27%, 40.77% and 72.28% of the variance of total algae, cyanobacteria, green algae, and diatoms and dinoflagellates, respectively. The positive impacts of increasing TP concentrations on abundances of total algae, cyanobacteria, and green algae were observed during periods of relatively high TP concentrations since the mid-1970s. The positive responses of total algae, cyanobacteria, green algae and diatoms and dinoflagellates to increasing average air temperatures were observed since the mid-1990s, showing that a generally warmer environment facilitated algae proliferation. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据