4.7 Article

Improving the mechanical properties of Fe - TiB2 high modulus steels through controlled solidification processes

期刊

ACTA MATERIALIA
卷 118, 期 -, 页码 187-195

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.07.056

关键词

Steel; Young's modulus; Density; Ductility; Strength; Toughness

向作者/读者索取更多资源

We investigated novel pathways to improve the mechanical properties of liquid metallurgy produced Fe - TiB2 based high modulus steels (HMS) by controlled solidification kinetics and subsequent thermo-mechanical treatments. The solidification rate was varied by casting of hyper-eutectic alloys (20 vol% TiB2) into moulds with differing internal thickness. Ingots between 5 and 40 mm thickness exhibited irregular particle microstructure consisting of sharp-edged coarse primary particles (increasingly clustered with slower solidification) and closely spaced irregular lamellae. Casting defects can be alleviated by hot rolling, but the mechanical properties remain unsatisfactory. Increasing the solidification rate results only at mould thicknesses of 4 mm and below in a significant refinement of the particle microstructure, necessitating liquid metal deposition techniques to utilise it for obtained improved mechanical performance of HMS. Decreasing the solidification rate causes density-induced floatation of the primary particles, which can be used in block-casting for the production of alloys consisting of small and spheroidised eutectic particles, exhibiting high ductility and superior toughness. Annealing just above the solidus-temperature allows the eutectic zones to liquefy and sink, leaving only primary TiB2 particles behind in the top zone of the alloy. Despite the increased particle fraction up to 24 vol%, both strength, specific modulus and ductility are improved over standard processed HMS alloys with 20 vol% TiB2. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据