4.5 Article

Coupled Model of Two-phase Debris Flow, Sediment Transport and Morphological Evolution

期刊

ACTA GEOLOGICA SINICA-ENGLISH EDITION
卷 90, 期 6, 页码 2206-2215

出版社

WILEY
DOI: 10.1111/1755-6724.13031

关键词

debris flows; two-phase model; sediment transport; entrainment rate; finite volume method

资金

  1. NSFC [41572303, 4151001059, 41101008]
  2. National Science & Technology Pillar Program [2014BAL05B01]
  3. CAS Light of West China Program

向作者/读者索取更多资源

The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr-Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe's Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据