4.5 Article

Characterisation of 3D printed sand moulds using micro-focus X-ray computed tomography

期刊

RAPID PROTOTYPING JOURNAL
卷 25, 期 2, 页码 404-416

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/RPJ-04-2018-0091

关键词

Computer simulation; Alloys; Casting; 3D sand mould; Gas permeability; X-ray tomography

资金

  1. MSMP laboratory of the Low-Cast project
  2. EPSRC [EP/H01506X/1] Funding Source: UKRI

向作者/读者索取更多资源

Purpose Micro-focus X-ray computed tomography (CT) can be used to quantitatively evaluate the packing density, pore connectivity and provide the basis for specimen derived simulations of gas permeability of sand mould. This non-destructive experiment or following simulations can be done on any section of any size sand mould just before casting to validate the required properties. This paper aims to describe the challenges of this method and use it to simulate the gas permeability of 3D printed sand moulds for a range of controlling parameters. The permeability simulations are compared against experimental results using traditional measurement techniques. It suggests that a minimum volume of only 700 x 700 x 700 mu m(3) is required to obtain, a reliable and most representative than the value obtained by the traditional measurement technique, the simulated permeability of a specimen. Design/methodology/approach X-ray tomography images were used to reconstruct 3D models to simulate them for gas permeability of the 3D printed sand mould specimens, and the results were compared with the experimental result of the same. Findings The influence of printing parameters, especially the re-coater speed, on the pore connectivity of the 3D printed sand mould and related permeability has been identified. Characterisation of these sand moulds using X-ray CT and its suitability, compared to the traditional means, are also studied. While density and 3PB strength are a measure of the quality of the moulds, the pore connectivity from the tomographic images precisely relates to the permeability. The main conclusions of the present study are provided below. A minimum required sample size of 700 x 700 x 700 mu m(3) is required to provide representative permeability results. This was obtained from sand specimens with an average sand grain size of 140 mu m, using the tomographic volume images to define a 3D mesh to run permeability calculations. Z-direction permeability is always lower than that in the X-/Y-directions due to the lower values of X-(120/140 mu m) and Y-(101.6 mu m) resolutions of the furan droplets. The anisotropic permeability of the 3D printed sand mould is mainly due to, the only adjustable, X-directional resolution of the furan droplets; the Y-directional resolution is a fixed distance, 102.6 mu m, between the printhead nozzles and the Z-directional one is usually, 280 mu m, twice the size of an average sand grain.A non-destructive and most representative permeability value can be obtained, using the computer simulation, on the reconstructed 3D X-ray tomography images obtained on a specific location of a 3D printed sand mould. This saves time and effort on printing a separate specimen for the traditional test which may not be the most representative to the printed mould. Originality/value The experimental result is compared with the computer simulated results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据