4.8 Article

Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1804250115

关键词

ocean acidification; seafloor; CaCO3; dissolution; anthropogenic CO2

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. US National Science Foundation (NSF) [OCE-0960820]
  3. NSF [PLR-1425989]
  4. Department of Earth and Planetary Sciences at McGill University

向作者/读者索取更多资源

Oceanic uptake of anthropogenic CO2 leads to decreased pH, carbonate ion concentration, and saturation state with respect to CaCO3 minerals, causing increased dissolution of these minerals at the deep seafloor. This additional dissolution will figure prominently in the neutralization of man-made CO2 . However, there has been no concerted assessment of the current extent of anthropogenic CaCO3 dissolution at the deep seafloor. Here, recent databases of bottom-water chemistry, benthic currents, and CaCO3 content of deep-sea sediments are combined with a rate model to derive the global distribution of benthic calcite dissolution rates and obtain primary confirmation of an anthropogenic component. By comparing preindustrial with present-day rates, we determine that significant anthropogenic dissolution now occurs in the western North Atlantic, amounting to 40-100% of the total seafloor dissolution at its most intense locations. At these locations, the calcite compensation depth has risen similar to 300 m. Increased benthic dissolution was also revealed at various hot spots in the southern extent of the Atlantic, Indian, and Pacific Oceans. Our findings place constraints on future predictions of ocean acidification, are consequential to the fate of benthic calcifiers, and indicate that a by-product of human activities is currently altering the geological record of the deep sea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据