4.6 Article

Modelling Chemical-Looping assisted by Oxygen Uncoupling (CLaOU): Assessment of natural gas combustion with calcium manganite as oxygen carrier

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 37, 期 4, 页码 4361-4369

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2018.09.037

关键词

CO2 capture; Chemical-Looping Combustion; Methane; Modelling; Perovskite

资金

  1. seventh Framework Programme of the European Commission (INNOCUOUS) [241401]
  2. Spanish Ministry of Economy, Industry and Competitiveness [ENE2016-77982-R]
  3. European Regional Development Fund (ERDF)
  4. CSIC [2017-80E035]

向作者/读者索取更多资源

Chemical-Looping Combustion (CLC) is a promising technology for performing CO2 capture in combustion processes at low cost and with lower energy consumption. Fuel conversion modelling assists in optimizing and predicting the performance of the CLC process under different operating conditions. For this work, the combustion of natural gas was modelled using a CaMnO3 -type perovskite as oxygen-carrier and taking into consideration the processes of fluid dynamics and reaction kinetics involved in fuel conversion. The CLC model was validated against experimental results obtained from the 120 kWth CLC unit at the Vienna University of Technology (TUV). Good agreement between experimental and model predictions of fuel conversion was found when the temperature, pressure drop, solids circulation rate and fuel flow were varied. Model predictions showed that oxygen transfer by means of the gas-solid reaction of the fuel with the oxygen-carrier was relevant throughout the entire fuel-reactor. However, complete combustion could be only achieved under operating conditions where the process of Chemical-Looping assisted by Oxygen Uncoupling (CLaOU) became dominant, i.e. a relevant fraction of the fuel was burnt with molecular oxygen (O-2 ) released by the oxygen-carrier. This phenomenon was improved by the design configuration of the 120 kWth CLC unit at TUV, in which oxidized particles are recirculated to the upper part of the fuel-reactor. Thus, the validated model identified the conditions at which complete combustion can be achieved, demonstrating that it is a powerful tool for the simulation and optimization of the CLC process with the CaMnO3-type material. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据