4.8 Article

Depinning Dynamics of Crack Fronts

期刊

PHYSICAL REVIEW LETTERS
卷 121, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.121.235501

关键词

-

向作者/读者索取更多资源

We investigate experimentally and theoretically the dynamics of a crack front during the micro-instabilities taking place in heterogeneous materials between two successive equilibrium positions. We focus specifically on the spatiotemporal evolution of the front, as it relaxes to a straight configuration, after depinning from a single obstacle of controlled strength and size. We show that this depinning dynamics is not controlled by inertia, but instead by the rate dependency of the dissipative mechanisms taking place within the fracture process zone. This implies that the crack speed fluctuations around its average value v(m) can be predicted from an overdamped equation of motion (v - v(m))/v(0) = [G - G(c)(v(m))]/G(c)(v(m)) involving the characteristic material speed v(0) = G(c)(v(m))/G(c)'(v(m)) that emerges from the variation of fracture energy with crack speed. Our findings pave the way to a quantitative description of the critical depinning dynamics of cracks in disordered solids and open up new perspectives for the prediction of the effective failure properties of heterogeneous materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据