4.6 Article

High efficiency terahertz generation in a multi-stage system

期刊

OPTICS EXPRESS
卷 26, 期 23, 页码 29744-29768

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.26.029744

关键词

-

类别

资金

  1. European Union's Seventh Framework Programme (FP7/2007-2013) [609920]
  2. Hamburg Center for Ultrafast Imaging - Structure, Dynamics and Control of Matter at the Atomic Scale (CUI) [DFG-EXC1074]

向作者/读者索取更多资源

We describe a robust system for laser-driven narrowband terahertz generation with high conversion efficiency in periodically poled Lithium Niobate (PPLN). In the multi-stage terahertz generation system, the pump pulse is recycled after each PPLN stage for further terahertz generation. By out-coupling the terahertz radiation generated in each stage, extra absorption is circumvented and effective interaction length is increased. The separation of the terahertz and optical pulses at each stage is accomplished by an appropriately designed out-coupler. To evaluate the proposed architecture, the governing 2-D coupled wave equations in a cylindrically symmetric geometry are numerically solved using the finite difference method. Compared to the 1-D calculation which cannot capture the self-focusing and diffraction effects, our 2-D numerical method captures the effects of difference frequency generation, self-phase modulation, self-focusing, beam diffraction, dispersion and terahertz absorption. We found that the terahertz generation efficiency can be greatly enhanced by compensating the dispersion of the pump pulse after each stage. With a two-stage system, we predict the generation of a 17.6 mJ terahertz pulse with total conversion efficiency eta(total) = 1.6% at 0.3 THz using a 1.1 J pump laser with a two-lines spectrum centered at 1 mu m. The generation efficiency of each stage is above 0.8% with the out-coupling efficiencies above 93.0%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据