4.7 Article

Spiking activities in chain neural network driven by channel noise with field coupling

期刊

NONLINEAR DYNAMICS
卷 95, 期 4, 页码 3237-3247

出版社

SPRINGER
DOI: 10.1007/s11071-018-04752-2

关键词

Electromagnetic induction; Field coupling; Channel noise; Neuronal network

资金

  1. National Natural Science Foundation of China [11775091, 11474117]

向作者/读者索取更多资源

The distribution of electromagnetic field in both intracellular and extracellular environments can be changed by fluctuations in the membrane potential, and the effects of electromagnetic induction should be considered in dealing with neuronal electrical activities, wherein field coupling plays a very important role in signal exchange between neurons. In this paper, basing on an improved electromagnetic induction model, a chain network is designed to investigate the responses of the neural system to channel noise under field coupling. Both the synchronization factor and coefficient of variation are numerically simulated, and it is found that (i) the weak field coupling strength is conducive to the regularity of discharge patterns in the neuronal network; (ii) the synchronization of neural spikes can be enhanced by selecting a suitable coupling intensity; and (iii) in the presence of the weak noise intensity, the discharge mode of neuron is easily affected by the inducing coefficient. Our results show that the regularity of discharge patterns in a stochastic neural network depends on the field coupling intensity, which reflects the importance of field coupling in the selection of neural discharge modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据