4.8 Article

Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries

期刊

NANO RESEARCH
卷 12, 期 9, 页码 2211-2217

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-018-2248-9

关键词

multichannel porous TiO2 nanofibers; Cu nanodots; Cu2+ doping; sodium ion batteries; density functional theory (DFT) calculations

资金

  1. National Key R&D Research Program of China [2018YFB0905400, 2016YFB0100305]
  2. National Natural Science Foundation of China [51622210, 51872277]
  3. Fundamental Research Funds for the Central Universities [WK3430000004]
  4. DNL cooperation Fund, CAS [DNL180310]

向作者/读者索取更多资源

The use of TiO2 as an anode in rechargeable sodium-ion batteries (NIBs) is hampered by intrinsic low electronic conductivity of TiO2 and inferior electrode kinetics. Here, a high-performance TiO2 electrode for NIBs is presented by designing a multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies (Cu-MPTO). The in-situ grown well-dispersed copper nanodots of about 3 nm on TiO2 surface could significantly enhance electronic conductivity of the TiO2 fibers. The one-dimensional multichannel porous structure could facilitate the electrolyte to soak in, leading to short transport path of Na+ through carbon toward the TiO2 nanoparticle. The Cu2+-doping induced oxygen vacancies could decrease the bandgap of TiO2, resulting in easy electron trapping. With this strategy, the Cu-MPTO electrodes render an outstanding rate performance for NIBs (120 mAh center dot g(-1) at 20 C) and a superior cycling stability for ultralong cycle life (120 mAh center dot g(-1) at 20 C and 96.5% retention over 2,000 cycles). Density functional theory (DFT) calculations also suggest that Cu2+ doping can enhance the conductivity and electron transfer of TiO2 and lower the sodiation energy barrier. This strategy is confirmed to be a general process and could be extended to improve the performance of other materials with low electronic conductivity applied in energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据