4.3 Article

Cyclo(His-Pro) inhibits NLRP3 inflammasome cascade in ALS microglial cells

期刊

MOLECULAR AND CELLULAR NEUROSCIENCE
卷 94, 期 -, 页码 23-31

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2018.11.002

关键词

NLRP3; Peroxynitrite; iNOS; NOX2; Caspase 1; SOD1 activity; Diketopiperazine

资金

  1. Department of Experimental Medicine [FFRB17IB]

向作者/读者索取更多资源

Neuroinflammation, i.e. self-propelling progressive cycle of microglial activation and neuron damage, as well as improper protein folding, are recognized as major culprits of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Mutations in several proteins have been linked to ALS pathogenesis, including the G93A mutation in the superoxide dismutase 1 (SOD1) enzyme. SOD1(G93A) mutant is prone to aggregate thus inducing both oxidative stress and neuroinflammation. In this study we used hSOD1(G93A) microglial cells to investigate the effects of the antioxidant and anti-inflammatory cyclic dipeptide (His-Pro) on LPS-induced inflammasome activation. We found that cyclo(His-Pro) inhibits NLRP3 inflammasome activation by reducing protein nitration via reduction in NO and ROS levels, indicative of lower peroxynitrite generation by LPS. Low levels in peroxynitrite are related to NF-kappa B inhibition responsible for iNOS down-regulation and NO dampening. On the other hand, cyclo(His-Pro)-mediated ROS attenuation, not linked to Nrf2 activation in this cellular model, is ascribed to increased soluble SOD1 activity due to the up-regulation of Hsp70 and Hsp27 expression. Conclusively, our results, besides corroborating the anti-inflammatory properties of cyclo(His-Pro), highlight a novel role of the cyclic dipeptide as a proteostasis regulator, and therefore a good candidate for the treatment of ALS and other misfolding diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据