4.5 Article

Stability analysis of generally laminated conical shells with variable thickness under axial compression

期刊

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
卷 27, 期 16, 页码 1373-1386

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15376494.2018.1511016

关键词

Conical shells; buckling; variable thickness; generally laminated; power series

向作者/读者索取更多资源

The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to investigate all combinations of classical boundary conditions. The results are verified in comparison with Galerkin method and the available results in the literature. Effects of thickness function coefficient, semi-vertex angle, lamination sequence, length to diameter ratio, and initial thickness of the cone on the buckling load are investigated. It is observed that these parameters have considerable effects on the critical buckling load of a conical shell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据