4.7 Article

Mlh1 deficiency increases the risk of hematopoietic malignancy after simulated space radiation exposure

期刊

LEUKEMIA
卷 33, 期 5, 页码 1135-1147

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41375-018-0269-8

关键词

-

资金

  1. NASA [NNX14AC95G]
  2. NASA [686069, NNX14AC95G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Cancer-causing genome instability is a major concern during space travel due to exposure of astronauts to potent sources of high-linear energy transfer (LET) ionizing radiation. Hematopoietic stem cells (HSCs) are particularly susceptible to genotoxic stress, and accumulation of damage can lead to HSC dysfunction and oncogenesis. Our group recently demonstrated that aging human HSCs accumulate microsatellite instability coincident with loss of MLH1, a DNA Mismatch Repair (MMR) protein, which could reasonably predispose to radiation-induced HSC malignancies. Therefore, in an effort to reduce risk uncertainty for cancer development during deep space travel, we employed an Mlh1(+/-) mouse model to study the effects high-LET Fe-56 ion space-like radiation. Irradiated Mlh1(+/-) mice showed a significantly higher incidence of lymphomagenesis with Fe-56 ions compared to gamma-rays and unirradiated mice, and malignancy correlated with increased MSI in the tumors. In addition, whole-exome sequencing analysis revealed high SNVs and INDELs in lymphomas being driven by loss of Mlh1 and frequently mutated genes had a strong correlation with human leukemias. Therefore, the data suggest that age-related MMR deficiencies could lead to HSC malignancies after space radiation, and that countermeasure strategies will be required to adequately protect the astronaut population on the journey to Mars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据