4.6 Article

Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition

期刊

LANGMUIR
卷 35, 期 6, 页码 2431-2442

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b03664

关键词

-

资金

  1. National Natural Science Foundation of China [11872283, 11602133]
  2. DOE [DE-SC0019453]
  3. U.S. Army Research Laboratory [W911NF-12-2-0023]
  4. China Scholarship Council (CSC) [201706260015]

向作者/读者索取更多资源

The superhydrophobic leaves of a lotus plant and other natural surfaces with self-cleaning function have been studied intensively for the development of artificial biomimetic surfaces. The surface roughness generated by hierarchical structures is a crucial property required for superhydrophobicity and self-cleaning. Here, we demonstrate a novel self-cleaning mechanism of textured surfaces attributed to a spontaneous coalescence-induced wetting transition. We focus on the wetting transition as it represents a new mechanism, which can explain why droplets on rough surfaces are able to change from the highly adhesive Wenzel state to the low adhesion Cassie-Baxter state and achieve self-cleaning. In particular, we perform many-body dissipative particle dynamics simulations of liquid droplets (with a diameter of 89 mu m) sitting on mechanically textured substrates. We quantitatively investigate the wetting behavior of an isolated droplet as well as coalescence of droplets for both Cassie-Baxter and Wenzel states. Our simulation results reveal that droplets in the Cassie-Baxter state have much lower contact angle hysteresis and smaller hydrodynamic resistance than droplets in the Wenzel state. When small neighboring droplets coalesce into bigger ones on textured hydrophobic substrates, we observe a spontaneous wetting transition from the Wenzel state to the Cassie-Baxter state, which is powered by the surface energy released upon coalescence of the droplets. For superhydrophobic surfaces, the released surface energy may be sufficient to cause a jumping motion of droplets off the surface, in which case adding one more droplet to the coalescence may increase the jumping velocity by one order of magnitude. When multiple droplets are involved, we found that the spatial distribution of liquid components in the coalesced droplet can be controlled by properly designing the overall arrangement of droplets and the distance between them. These findings offer new insights for designing effective biomimetic self-cleaning surfaces by enhancing spontaneous Wenzel-to-Cassie wetting transitions, and additionally, for developing new noncontact methods to manipulate liquids inside the small droplets via multiple-droplet coalescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据