4.8 Article

Pore-Free Matrix with Cooperative Chelating of Hyperbranched Ligands for High-Performance Separation of Uranium

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 42, 页码 28853-28861

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b09681

关键词

nanodiamond; hyperbranched; uranium; amidoxime; adsorption

资金

  1. National Natural Science Foundation of China [21171122, 21271132, 11475120, J1210004, J1103315]
  2. National Program on Key Basic Research Project of China (973 Program) [2013CB328905]
  3. Comprehensive Training Platform of Specialized Laboratory, College of Chemistry, Sichuan University

向作者/读者索取更多资源

A new strategy combining a pore-free matrix and cooperative chelating was proposed in the present paper in order to effectively avoid undesired nonselective physical adsorption and intraparticle diffusion caused by pores and voids in porous sorbents, and to greatly enhance uranium-chelating capability based on hyperbranched amidoxime ligands on the surface of nanodiamond particles. Thus, a pore-free, amidoxime-terminated hyperbranched nanodiamond (ND-AO) was designed and synthesized. The experimental results demonstrate that the strategy endows the as-synthesized ND-AO with the following expected features: (1) distinctively high uranium selectivity (S-U = q(e)-U/q(e)-tol x 100%) from over 80% to nearly 100% over the whole weak acidity range (pH < 4.5); especially, the S-U can reach up to unprecedented >91% at pH 4.5, more than 20% of selectivity increment over any analogous sorbent materials reported so far, with a uranium sorption capacity of 121 mg/g in simulated nuclear industry effluent samples containing 12 coexistent nuclide ions; (2) superfast equilibrium sorption time of <30 s; and (3) one of the highest distribution coefficients (K-d) of similar to 3 X 10(6) mL/g for U(VI) as well as a fairly high sorption capacity of 212 mg/g at pH 4.5 in pure uranium solution. The strategy could also provide an optional approach for the design and fabrication of other new high-performance sorbing materials with prospective applications in selective separation of other interested metal ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据