4.5 Article

Novel decellularized animal conchal cartilage graft for application in human patient

出版社

WILEY
DOI: 10.1002/term.2767

关键词

caprine conchal cartilage; decellurization; human patients; in vivo; microtia; rhinoplasty

资金

  1. Department of Biotechnology (DBT), Government of India [BT/PR7292/AAQ/534/2012]

向作者/读者索取更多资源

Restoration of the external ear and nose in human patients, in either congenital deformity or acquired defects, is a challenge in reconstructive surgery. Optimization of the currently available materials is necessary for rhinoplasty and microtia correction to avoid intraoperative manoeuvring and early rejection. The aim of this study was to develop cross-linked decellularized caprine conchal cartilages as biocompatible, robust, and non-toxic matrix template. The characterization of the decellularized tissue encompasses in vitro lymphoproliferation assay, cytotoxicity test, agar gel precipitation test, in vivo immunocompatibility study, histology, and determination of pro-inflammatory cytokines in animal model. Decellularized cartilage was implanted in human volunteer at R. G. Kar Medical College and Hospital, Kolkata, India, and samples were assessed histologically by retrieving those after 4 months. The processed cartilages were implanted in rhinoplasty (nine) and microtia patients (six) keeping autogenous cartilage graft as control up to 18 months after surgery. Primary outcomes were viability and safety of the material, both in animal model and human pre-application in actual site. Secondary outcomes included self-assessed clinical findings on gross examination. This study is under the ethical approval no. RKC/14 dated January 27, 2012. The in vitro cellular reactivity was less in processed cartilage protein than control. Histology of retrieved tissues in animal model and human volunteer showed no adverse reactions. Production of IL-2, IL-6, and TNF-alpha cytokines was lower at 4 weeks. The rhinoplasty and microtia operation in clinical patients utilizing the processed cartilage showed satisfactory recovery with improved facial look. These low cost, easily available, biocompatible, safe xenocartilage biomatrices of caprine conchal cartilage origin are very flexible in shape and size, enabling them as potential bioimplant for repair of nasal and auricular structure without any rejection or diverse biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据