4.8 Article

Improvement of Catalytic Activity by Nanofibrous CuInS2 for Electrochemical CO2 Reduction

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 46, 页码 31695-31701

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b11151

关键词

carbon dioxide; CuInS2; electrochemical reduction; nanofiber; electrolysis

资金

  1. Scientific Research Foundation
  2. TUBITAK (The Scientific and Technological Research Council of Turkey) [214M366]
  3. Selcuk University, Scientific Research Projects Coordination Unit [16201044]
  4. Austrian Science Foundation (FWF) [Z 222-N19]

向作者/读者索取更多资源

The current study reports the application of chalcopyrite semiconductor CuInS2 (CIS) nanofibers for the reduction of CO2 to CO with a remarkable Faradaic efficiency of 77 +/- 4%. Initially the synthesis of CuInS2 nanofibers was carried out by adaptable electrospinning technique. To reduce the imperfection in the crystalline fiber, polyacrylonitrile (PAN) was selected as template polymer. Afterward, the desired chemical structure of nanofibers was achieved through sulfurization process. Making continuous CuInS2 nanofibers on the cathode surface by the electrospinning method brings the advantages of being economical, environmentally safe, and versatile. The obtained nanofibers of well investigated size and diameter according to the SEM (scanning electron microscope) were used in electrochemical studies. An improvement of Faradaic efficiency was achieved with the catalytic active CuInS2 in nanofibrous structure as compared to the solution processed CuInS2. This underlines the important effect of the electrode fabrication on the catalytic performance. Being less contaminated as compared to solution processing, and having a well-defined composition and increased catalytically active area, the CuInS2 nanofiber electrodes prepared by the electrospinning technique show a 4 times higher Faradaic efficiency. Furthermore, in this study, attention was paid to the stability of the CuInS2 nanofiber electrodes. The electrochemical reduction of CO2 to CO by using CIS nanofibers coated onto FTO electrodes was carried out for 10 h in total. The observed current density of 0.22 mA cm(-2) and the stability of CIS nanofiber electrodes are found to be competitive with other heterogeneous electrocatalysts. Hence, we believe that the fabrication and application of nanofibrous materials through the electrospinning technique might be of interest for electrocatalytic studies in CO2 reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据