4.8 Article

Alchemical Normal Modes Unify Chemical Space

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 10, 期 1, 页码 30-39

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.8b02805

关键词

-

资金

  1. Swiss National Science foundation [PPOOP2_138932, 407540_167186 NFP 75 Big Data, 200021_175747]
  2. European Union's Horizon 2020 Marie Sklodowska-Curie grant [706415]
  3. Marie Curie Actions (MSCA) [706415] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

In silico design of new molecules and materials with desirable quantum properties by high-throughput screening is a major challenge due to the high dimensionality of chemical space. To facilitate its navigation, we present a unification of coordinate and composition space in terms of alchemical normal modes (ANMs) which result from second order perturbation theory. ANMs assume a predominantly smooth nature of chemical space and form a basis in which new compounds can be expanded and identified. We showcase the use of ANMs for the energetics of the isoelectronic series of diatomics with 14 electrons, BN doped benzene derivatives (C6-2x(BN)(x)H-6 with x = 0,1,2,3), predictions for over 1.8 million BN doped coronene derivatives, and genetic energy optimizations in the entire BN-doped coronene space. Using Ge lattice scans as reference, the applicability of ANMs across the periodic table is demonstrated for III V and IV IV semiconductors Si, Sn, SiGe, SnGe, SiSn, as well as AiP, AlAs, AISb, GaP, GaAs, GaSb, InP, InAs, and InSb. Analysis of our results indicates simple qualitative structure property rules for estimating energetic rankings among isomers. Useful quantitative estimates can also be obtained when few atoms are changed to neighboring or lower lying elements in the periodic table. The quality of the predictions often increases with the symmetry of system chosen as reference due to cancellation of odd order terms. Rooted in perturbation theory, the ANM approach promises to generally enable unbiased compound exploration campaigns at reduced computational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据