4.6 Article

Molecular Dynamics Study of Kinetic Hydrate Inhibitors: The Optimal Inhibitor Size and Effect of Guest Species

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 3, 页码 1806-1816

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b09834

关键词

-

资金

  1. MORINO FOUNDATION FOR MOLECULAR SCIENCE
  2. MEXT [hp180204]

向作者/读者索取更多资源

We propose a model for slowing down of clathrate hydrate formation caused by kinetic hydrate inhibitors (KHIs) on the basis of the Gibbs-Thomson effect. The residence time of inhibitor molecules bound to the hydrate surface and the intrinsic growth rate of the clathrate hydrate without KHIs are key ingredients of the model. The binding free energies of the monomer, dimer, tetramer, and octamer of a KHI, polyvinylcaprolactam (PVCap), are calculated using molecular dynamics simulations to estimate the residence times, which are far beyond the feasible simulation time. Our model accounts for the kinetic inhibition mechanism while reproducing experimental data of the size dependence of PVCap very well. We demonstrate that this model explains why blends of high and low-molecular-weight polymers show better performance than the KHI with a unimodal molecular weight distribution and why quaternary ammonium cations are good KHIs for tetrahydrofuran hydrate although they cannot inhibit formation of natural gas hydrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据