4.5 Article

Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 123, 期 2, 页码 448-456

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.8b11059

关键词

-

资金

  1. Swiss National Science Foundation through the NCCR MUST [200021-117810]

向作者/读者索取更多资源

The Claisen rearrangement is a carboncarbon bond-forming, pericyclic reaction of fundamental importance due to its relevance in synthetic and mechanistic investigations of organic and biological chemistry. Despite continued efforts, the molecular origins of the rate acceleration in going from the aqueous phase into the protein is still incompletely understood. In the present work, the rearrangement reactions for allyl-vinyl-ether (AVE), its dicarboxylated variant (AVE-(CO2)(2)), and the biologically relevant substrate chorismate are investigated in the gas phase, water, and in chorismate mutase. Only the rearrangement of chorismate in the enzyme shows a negative differential barrier when compared to the reaction in water, which leads to the experimentally observed catalytic effect for the enzyme. The molecular origin of this effect is the positioning of AVE-(CO2)(2) and chorismate in the protein active site compared to AVE. Furthermore, in going from AVE-(CO2)(2) to chorismate, entropic effects due to rigidification and ring formation are operative, which lead to changes in the rate. On the basis of More O'Ferrall-Jencks diagrams, it is confirmed that C-O bond breaking precedes C-C bond formation in all cases. This effect becomes more pronounced in going from the gas phase to the protein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据