4.4 Article

Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique

出版社

ASME
DOI: 10.1115/1.4042233

关键词

-

向作者/读者索取更多资源

The rheological properties of the drilling fluid play a key role in controlling the drilling operation. Knowledge of drilling fluid rheological properties is very crucial for drilling hydraulic calculations required for hole cleaning optimization. Measuring the rheological properties during drilling sometimes is a time-consuming process. Wrong estimation of these properties may lead to many problems, such as pipe sticking, loss of circulation, and/or well control issues. The aforementioned problems increase the non-productive time and the overall cost of the drilling operations. In this paper, the frequent drilling fluid measurements (mud density, Marsh funnel viscosity (MFV), and solid percent) are used to estimate the rheological properties of bentonite spud mud. Artificial neural network (ANN) technique was combined with the self-adaptive differential evolution algorithm (SaDe) to develop an optimum ANN model for each rheological property using 1029 data points. The SaDe helped to optimize the best combination of parameters for the ANN models. For the first time, based on the developed ANN models, empirical equations are extracted for each rheological parameter. The ANN models predicted the rheological properties from the mud density, MFV, and solid percent with high accuracy (average absolute percentage error (AAPE) less than 5% and correlation coefficient higher than 95%). The developed apparent viscosity model was compared with the available models in the literature using the unseen dataset. The SaDe-ANN model outperformed the other models which overestimated the apparent viscosity of the spud drilling fluid. The developed models will help drilling engineers to predict the rheological properties every 15-20 min. This will help to optimize hole cleaning and avoid pipe sticking and loss of circulation where bentonite spud mud is used. No additional equipment or special software is required for applying the new method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据